

�� ���������� ��!�� ����

��!���� �!��"�"�������� -���� -�

	#���������#�-�#���
�������������#��������������

���,�,� ��-�������"�������-����-������$
�,

���-���-��

�! ����!"-�� ��� �����-�� �,� �������
����� -�����-���� ��,�-���� ,��� �� ��
��.� ���� -������� ��-�-��� -�
���������

	�� ������-�� ���� -� �,� �����������-��
�� ����� ����-���! ��� ����

� �������� �� ������-��������
����� ��. �� ����� ��� �������� �,�
�����������-��� �� ��� ��� -� ���������

	����-�� ��� �����������-2�

�� �,� -���--� ������.� 2� ������ ����-��
-��� �� �������� �� �� ���-�! 2������
��2� -������-�� ����-2���

�! ������-�� �,�� �� "�2������# �
-������ ������ -��� ��� -��2 �2 �
�-����-2��� ���2�� �! �2���-�� �,�-� 2�
2������ -� -������-�� ���������

,��� ���2�� �� �� ���� �2 �22�� �,�
����! 2� ��2�������-2� ��� ����,�

�	2���� ��� 2�2���	����� ������

���� �� �	2�� ��� ��� �,����2	� �� ��
���� �� ����- 2�2���	����
�
�2������� �� ��22������� ��� ����

��2

�� �	�
 2�-	��
� ��	�����	��-����

The size of candidate set and the amount of computation can
be controlled by setting the number of triggers, which makes the
entire framework much more �exible. In practice, various triggers
are used in the system, such as visited items, categories and so on.

3 LEARNING IDS REPRESENTATION
In this section, we discuss how to embed all types of IDs in E-
commerce into one semantic space. We explore both users’ interac-
tive sequences on item IDs and the structural connections among
di�erent types of IDs.

3.1 Skip-gram on User’s Interactive Sequences
In E-commerce, item is the core interactive unit. We can obtain mas-
sive item ID sequences from di�erent interactive sessions, which are
the implicit feedback of users. By regarding them as “documents”,
skip-gram model is to �nd the representations that are useful for
predicting the surrounding item IDs given the target item ID in a
sequence, which is illustrated in Figure 3. More formally, given a
sequence of item IDs {item1, . . . , itemi , . . . , itemN }, the objective
of the skip-gram model is to maximize the average log probability:

J = 1
N

N’
n=1

1n+jN , j,0’
�CjC

logp(itemn+j |itemn), (1)

where C is the length of context window.

Figure 3: The skip-gram model with context window of
length C = 2.

In the basic skip-gram model, p(itemj |itemi) is de�ned by the
softmax function:

p(itemj |itemi) =
exp(e0j

Tei)ÕD
d=1 exp(e

0
d
Tei)
, (2)

where e0 2 E0(⇢ Rm⇥D) and e 2 E(⇢ Rm⇥D). E0 and E are matrices
corresponding to the context and target representations respec-
tively.m is the dimension of embedding vectors. D is the size of the
dictionary that contains all item IDs.

3.2 Log-uniform Negative-sampling
The computational cost of r logp(itemj |itemi) is proportional toD,
which makes it impractical when D is very large. Noise Contrastive
Estimation (NCE) assumes that a good model is able to di�erentiate
data from noise and subsequently approximates the log probability
of softmax [16, 25] with the means of logistic regression. While
the skip-gram model is only concerned with learning high-quality
vector representation, Mikolov et al. simplify NCE by negative-
sampling [24] and replace softmax function with

p(itemj |itemi) = � (e0j
Tei)

S÷
s=1

� (�e0sTei), (3)

where � (x) = 1
1+exp(�x) is sigmoid function and S is the number of

negative samples to be drawn from the noise distribution Pneg(item)
for each positive sample.While NCE requires both the sampling and
the numerical probability of noise distribution, negative-sampling
only needs the sampling.

The noise distribution Pneg(item) is a free parameter and the
simplest choice is the uniform distribution. However, the uniform
distribution cannot count the imbalance between rare and frequent
items. The popular item IDs appear in context window of many
target item IDs and such item IDs provide little information. In this
paper, we balance them with the log-uniform negative-sampling,
where negative samples are drawn from the Zip�an distribution
[29]. Zip�an distribution approximates many types of data in the
physical and social sciences, and items subject to it quite well. That
means the appearing frequency of any item is inversely propor-
tional to its rank in the frequency table. To further speed up the
negative-sampling procedure, we �rst sort items in decreasing or-
der of frequency and index them in range [0,D) according to their
ranks. Then we can approximate Zip�an distribution with

p(index) = log(index + 2) � log(index + 1)
log(D + 1) . (4)

The cumulative distribution function is:

F (x) = p(x index)

=

index’
i=0

log(i + 2) � log(i + 1)
log(D + 1)

=
log(index + 2)
log(D + 1) .

(5)

Let F (x) = r and r is a random number drawn from the uniform
distribution U (0, 1]. The sampling of Zip�an distribution can be
approximated by:

index = d(D + 1)r e � 2. (6)

By utilizing the above approximation, the log-uniform negative-
sampling is very computationally e�cient.

3.3 IDs and Their Structural Connections
There are many types of IDs (as illustrated in Figure 1) and they
can be divided into two groups:

The size of candidate set and the amount of computation can
be controlled by setting the number of triggers, which makes the
entire framework much more �exible. In practice, various triggers
are used in the system, such as visited items, categories and so on.

3 LEARNING IDS REPRESENTATION
In this section, we discuss how to embed all types of IDs in E-
commerce into one semantic space. We explore both users’ interac-
tive sequences on item IDs and the structural connections among
di�erent types of IDs.

3.1 Skip-gram on User’s Interactive Sequences
In E-commerce, item is the core interactive unit. We can obtain mas-
sive item ID sequences from di�erent interactive sessions, which are
the implicit feedback of users. By regarding them as “documents”,
skip-gram model is to �nd the representations that are useful for
predicting the surrounding item IDs given the target item ID in a
sequence, which is illustrated in Figure 3. More formally, given a
sequence of item IDs {item1, . . . , itemi , . . . , itemN }, the objective
of the skip-gram model is to maximize the average log probability:

J = 1
N

N’
n=1

1n+jN , j,0’
�CjC

logp(itemn+j |itemn), (1)

where C is the length of context window.

Figure 3: The skip-gram model with context window of
length C = 2.

In the basic skip-gram model, p(itemj |itemi) is de�ned by the
softmax function:

p(itemj |itemi) =
exp(e0j

Tei)ÕD
d=1 exp(e

0
d
Tei)
, (2)

where e0 2 E0(⇢ Rm⇥D) and e 2 E(⇢ Rm⇥D). E0 and E are matrices
corresponding to the context and target representations respec-
tively.m is the dimension of embedding vectors. D is the size of the
dictionary that contains all item IDs.

3.2 Log-uniform Negative-sampling
The computational cost of r logp(itemj |itemi) is proportional toD,
which makes it impractical when D is very large. Noise Contrastive
Estimation (NCE) assumes that a good model is able to di�erentiate
data from noise and subsequently approximates the log probability
of softmax [16, 25] with the means of logistic regression. While
the skip-gram model is only concerned with learning high-quality
vector representation, Mikolov et al. simplify NCE by negative-
sampling [24] and replace softmax function with

p(itemj |itemi) = � (e0j
Tei)

S÷
s=1

� (�e0sTei), (3)

where � (x) = 1
1+exp(�x) is sigmoid function and S is the number of

negative samples to be drawn from the noise distribution Pneg(item)
for each positive sample.While NCE requires both the sampling and
the numerical probability of noise distribution, negative-sampling
only needs the sampling.

The noise distribution Pneg(item) is a free parameter and the
simplest choice is the uniform distribution. However, the uniform
distribution cannot count the imbalance between rare and frequent
items. The popular item IDs appear in context window of many
target item IDs and such item IDs provide little information. In this
paper, we balance them with the log-uniform negative-sampling,
where negative samples are drawn from the Zip�an distribution
[29]. Zip�an distribution approximates many types of data in the
physical and social sciences, and items subject to it quite well. That
means the appearing frequency of any item is inversely propor-
tional to its rank in the frequency table. To further speed up the
negative-sampling procedure, we �rst sort items in decreasing or-
der of frequency and index them in range [0,D) according to their
ranks. Then we can approximate Zip�an distribution with

p(index) = log(index + 2) � log(index + 1)
log(D + 1) . (4)

The cumulative distribution function is:

F (x) = p(x index)

=

index’
i=0

log(i + 2) � log(i + 1)
log(D + 1)

=
log(index + 2)
log(D + 1) .

(5)

Let F (x) = r and r is a random number drawn from the uniform
distribution U (0, 1]. The sampling of Zip�an distribution can be
approximated by:

index = d(D + 1)r e � 2. (6)

By utilizing the above approximation, the log-uniform negative-
sampling is very computationally e�cient.

3.3 IDs and Their Structural Connections
There are many types of IDs (as illustrated in Figure 1) and they
can be divided into two groups:

The size of candidate set and the amount of computation can
be controlled by setting the number of triggers, which makes the
entire framework much more �exible. In practice, various triggers
are used in the system, such as visited items, categories and so on.

3 LEARNING IDS REPRESENTATION
In this section, we discuss how to embed all types of IDs in E-
commerce into one semantic space. We explore both users’ interac-
tive sequences on item IDs and the structural connections among
di�erent types of IDs.

3.1 Skip-gram on User’s Interactive Sequences
In E-commerce, item is the core interactive unit. We can obtain mas-
sive item ID sequences from di�erent interactive sessions, which are
the implicit feedback of users. By regarding them as “documents”,
skip-gram model is to �nd the representations that are useful for
predicting the surrounding item IDs given the target item ID in a
sequence, which is illustrated in Figure 3. More formally, given a
sequence of item IDs {item1, . . . , itemi , . . . , itemN }, the objective
of the skip-gram model is to maximize the average log probability:

J = 1
N

N’
n=1

1n+jN , j,0’
�CjC

logp(itemn+j |itemn), (1)

where C is the length of context window.

Figure 3: The skip-gram model with context window of
length C = 2.

In the basic skip-gram model, p(itemj |itemi) is de�ned by the
softmax function:

p(itemj |itemi) =
exp(e0j

Tei)ÕD
d=1 exp(e

0
d
Tei)
, (2)

where e0 2 E0(⇢ Rm⇥D) and e 2 E(⇢ Rm⇥D). E0 and E are matrices
corresponding to the context and target representations respec-
tively.m is the dimension of embedding vectors. D is the size of the
dictionary that contains all item IDs.

3.2 Log-uniform Negative-sampling
The computational cost of r logp(itemj |itemi) is proportional toD,
which makes it impractical when D is very large. Noise Contrastive
Estimation (NCE) assumes that a good model is able to di�erentiate
data from noise and subsequently approximates the log probability
of softmax [16, 25] with the means of logistic regression. While
the skip-gram model is only concerned with learning high-quality
vector representation, Mikolov et al. simplify NCE by negative-
sampling [24] and replace softmax function with

p(itemj |itemi) = � (e0j
Tei)

S÷
s=1

� (�e0sTei), (3)

where � (x) = 1
1+exp(�x) is sigmoid function and S is the number of

negative samples to be drawn from the noise distribution Pneg(item)
for each positive sample.While NCE requires both the sampling and
the numerical probability of noise distribution, negative-sampling
only needs the sampling.

The noise distribution Pneg(item) is a free parameter and the
simplest choice is the uniform distribution. However, the uniform
distribution cannot count the imbalance between rare and frequent
items. The popular item IDs appear in context window of many
target item IDs and such item IDs provide little information. In this
paper, we balance them with the log-uniform negative-sampling,
where negative samples are drawn from the Zip�an distribution
[29]. Zip�an distribution approximates many types of data in the
physical and social sciences, and items subject to it quite well. That
means the appearing frequency of any item is inversely propor-
tional to its rank in the frequency table. To further speed up the
negative-sampling procedure, we �rst sort items in decreasing or-
der of frequency and index them in range [0,D) according to their
ranks. Then we can approximate Zip�an distribution with

p(index) = log(index + 2) � log(index + 1)
log(D + 1) . (4)

The cumulative distribution function is:

F (x) = p(x index)

=

index’
i=0

log(i + 2) � log(i + 1)
log(D + 1)

=
log(index + 2)
log(D + 1) .

(5)

Let F (x) = r and r is a random number drawn from the uniform
distribution U (0, 1]. The sampling of Zip�an distribution can be
approximated by:

index = d(D + 1)r e � 2. (6)

By utilizing the above approximation, the log-uniform negative-
sampling is very computationally e�cient.

3.3 IDs and Their Structural Connections
There are many types of IDs (as illustrated in Figure 1) and they
can be divided into two groups:

�����.�,
�� �����������.��� ��.���" ���)).�,

�" �!����.�, ����(����� (����(�.���
��:��� �-� .��� ��) .�� ����.���
���
�-�.� �����������.��� (�� � ������) ��.���"�

	.����"� �-� (���((�����(� �� .���
�� ����
.���.(���� �-� (���((�����(� ��
(��������).�, ����.���
���

:-��� :.� .� �-� :�.,-� �� .)��.���.��

3.3.1 Item ID and its a�ribute IDs. Item is the core interactive
unit in E-commerce and it has many attribute IDs, including prod-
uct ID, store ID, brand ID and category ID etc. We here give a
brief illustration about them. The “product” is a basic concept, e.g.,
“iPhone X” sold in di�erent stores shares the same product ID. When
one product is sold in several stores, it has a speci�c item ID in each
store (indicated by store ID). Each product belongs to some brand
(indicated by brand ID) and some categories (indicated by category
IDs). It is noteworthy that category IDs have many levels, such as
cate-level1 ID, cate-level2 ID and cate-level3 ID etc. Although many
other attributes IDs can be considered, we focus on seven types
of IDs in this paper without loss of generality. They are item ID,
product ID, store ID, brand ID, cate-level1 ID, cate-level2 ID and
cate-level3 ID.

3.3.2 User ID. A user can be identi�ed by the user ID, such as
cookie, device IMEI, or log-in username etc.

3.4 Jointly Embedding Attribute IDs
By exploring the structural connections between item ID and its
attribute IDs, we propose a hierarchical embedding model to jointly
learn low-dimensional representations for item ID as well as its
attribute IDs. The architecture of the proposed model is shown in
Figure 4, where the item ID is the core interactive unit and it is
connected to its attribute IDs by dashed lines.

Figure 4: The architecture of our jointly embedding model.

Firstly, the co-occurrence of item IDs also implicates the co-
occurrence of corresponding attribute IDs, which is indicated by
solid arrows in Figure 4. Supposing there are K(k = 1, . . . ,K) types
of IDs in the �rst group (as mentioned in 3.3.1), let IDs(itemi) =
[id1(itemi), . . . , idk (itemi), . . . , idK (itemi)], where id1(itemi) equals
itemi , and id2(itemi) is the product ID, id3(itemi) is the store ID
and so on. Then we replace Eq. 3 with:

p
�
IDs(itemj)|IDs(itemi)

�

=�

 K’
k=1

(w jke0jk)
T(wikeik)

!

S÷
s=1

�

�

K’
k=1

(wske0sk)
T(wikeik)

!
,

(7)

where e0·k 2 E0k (⇢ R
mk⇥Dk) and e·k 2 Ek (⇢ Rmk⇥Dk). E0k and

Ek are matrices that correspond to the context and target repre-
sentations of type k(k = 1, . . . ,K) respectively. For type k ,mk is
the dimension of its embedding vectors and Dk is the size of its
dictionary. Note that di�erent types of IDs can be embedded into
di�erent dimensions. The scalarwik is the weight of idk (itemi). As-
suming each item contributes equally to idk (itemi) and idk (itemi)
contains Vik di�erent items, it is reasonable to letwik be inversely
proportional to Vik . More formally, we have

I(x) =
⇢
0 ,x is False
1 ,x is True , (8)

Vik =
D’
j=1

I
�
idk (itemi) = idk (itemj)

�
, (9)

wik =
1

Vik
(k = 1, . . . ,K). (10)

For instance,wi1 = 1 as each id1(itemi) contains exactly one item,
andwi2 =

1
10 if product ID(itemi) contains ten di�erent items.

Secondly, structural connections between the item ID and at-
tribute IDsmean constraints, e.g., the vectors of two item IDs should
be close not only for their co-occurrence but also for their sharing
the same product ID, store ID, brand ID or cate-level1 ID etc. Con-
versely, attribute IDs should assimilate the information contained
in corresponding item IDs. Taking store ID as an example, the em-
bedding vector of a speci�c store ID should be the proper summary
of all item IDs sold in it. Consequently we de�ne:

p(itemi |IDs(itemi)) = �

 K’
k=2

wikeTi1Mkeik

!
, (11)

whereMk ⇢ Rm1⇥mk (k = 2, . . . ,K) is the matrix that transforms
embedding vector ei1 into the same dimension with embedding
vector eik . Then we maximize the following average log probability
instead of Eq. 1:

J = 1
N

N’
n=1

©≠
´
1n+jN , j,0’

�CjC
logp(IDs(itemn+j)|IDs(itemn))

+� logp(itemn |IDs(itemn)) � �
K’
k=1

| |Mk | |2
!
,

(12)

where � is the strength of constraints among IDs and � is the
strength of L2 regularization on transformation matrices.

Our approach embeds the item ID and its attribute IDs into one
semantic space, which is a useful property for deploying and trans-
ferring these representations in real world scenarios. As the proper-
ties of item ID and its attribute IDs remain stable for a relative long
time, the jointly embedding model and the learned representations
are updated weekly in our work.

3.5 Embedding User IDs
The user preferences can be re�ected from their interactive se-
quences of item IDs, and thus it is reasonable to represent the user
IDs by aggregating embedding vectors of the interactive item IDs.
There are many methods to aggregate item embedding vectors,
e.g. Average, RNN etc. [26], and Average is chosen in our work.

3.3.1 Item ID and its a�ribute IDs. Item is the core interactive
unit in E-commerce and it has many attribute IDs, including prod-
uct ID, store ID, brand ID and category ID etc. We here give a
brief illustration about them. The “product” is a basic concept, e.g.,
“iPhone X” sold in di�erent stores shares the same product ID. When
one product is sold in several stores, it has a speci�c item ID in each
store (indicated by store ID). Each product belongs to some brand
(indicated by brand ID) and some categories (indicated by category
IDs). It is noteworthy that category IDs have many levels, such as
cate-level1 ID, cate-level2 ID and cate-level3 ID etc. Although many
other attributes IDs can be considered, we focus on seven types
of IDs in this paper without loss of generality. They are item ID,
product ID, store ID, brand ID, cate-level1 ID, cate-level2 ID and
cate-level3 ID.

3.3.2 User ID. A user can be identi�ed by the user ID, such as
cookie, device IMEI, or log-in username etc.

3.4 Jointly Embedding Attribute IDs
By exploring the structural connections between item ID and its
attribute IDs, we propose a hierarchical embedding model to jointly
learn low-dimensional representations for item ID as well as its
attribute IDs. The architecture of the proposed model is shown in
Figure 4, where the item ID is the core interactive unit and it is
connected to its attribute IDs by dashed lines.

Figure 4: The architecture of our jointly embedding model.

Firstly, the co-occurrence of item IDs also implicates the co-
occurrence of corresponding attribute IDs, which is indicated by
solid arrows in Figure 4. Supposing there are K(k = 1, . . . ,K) types
of IDs in the �rst group (as mentioned in 3.3.1), let IDs(itemi) =
[id1(itemi), . . . , idk (itemi), . . . , idK (itemi)], where id1(itemi) equals
itemi , and id2(itemi) is the product ID, id3(itemi) is the store ID
and so on. Then we replace Eq. 3 with:

p
�
IDs(itemj)|IDs(itemi)

�

=�

 K’
k=1

(w jke0jk)
T(wikeik)

!

S÷
s=1

�

�

K’
k=1

(wske0sk)
T(wikeik)

!
,

(7)

where e0·k 2 E0k (⇢ R
mk⇥Dk) and e·k 2 Ek (⇢ Rmk⇥Dk). E0k and

Ek are matrices that correspond to the context and target repre-
sentations of type k(k = 1, . . . ,K) respectively. For type k ,mk is
the dimension of its embedding vectors and Dk is the size of its
dictionary. Note that di�erent types of IDs can be embedded into
di�erent dimensions. The scalarwik is the weight of idk (itemi). As-
suming each item contributes equally to idk (itemi) and idk (itemi)
contains Vik di�erent items, it is reasonable to letwik be inversely
proportional to Vik . More formally, we have

I(x) =
⇢
0 ,x is False
1 ,x is True , (8)

Vik =
D’
j=1

I
�
idk (itemi) = idk (itemj)

�
, (9)

wik =
1

Vik
(k = 1, . . . ,K). (10)

For instance,wi1 = 1 as each id1(itemi) contains exactly one item,
andwi2 =

1
10 if product ID(itemi) contains ten di�erent items.

Secondly, structural connections between the item ID and at-
tribute IDsmean constraints, e.g., the vectors of two item IDs should
be close not only for their co-occurrence but also for their sharing
the same product ID, store ID, brand ID or cate-level1 ID etc. Con-
versely, attribute IDs should assimilate the information contained
in corresponding item IDs. Taking store ID as an example, the em-
bedding vector of a speci�c store ID should be the proper summary
of all item IDs sold in it. Consequently we de�ne:

p(itemi |IDs(itemi)) = �

 K’
k=2

wikeTi1Mkeik

!
, (11)

whereMk ⇢ Rm1⇥mk (k = 2, . . . ,K) is the matrix that transforms
embedding vector ei1 into the same dimension with embedding
vector eik . Then we maximize the following average log probability
instead of Eq. 1:

J = 1
N

N’
n=1

©≠
´
1n+jN , j,0’

�CjC
logp(IDs(itemn+j)|IDs(itemn))

+� logp(itemn |IDs(itemn)) � �
K’
k=1

| |Mk | |2
!
,

(12)

where � is the strength of constraints among IDs and � is the
strength of L2 regularization on transformation matrices.

Our approach embeds the item ID and its attribute IDs into one
semantic space, which is a useful property for deploying and trans-
ferring these representations in real world scenarios. As the proper-
ties of item ID and its attribute IDs remain stable for a relative long
time, the jointly embedding model and the learned representations
are updated weekly in our work.

3.5 Embedding User IDs
The user preferences can be re�ected from their interactive se-
quences of item IDs, and thus it is reasonable to represent the user
IDs by aggregating embedding vectors of the interactive item IDs.
There are many methods to aggregate item embedding vectors,
e.g. Average, RNN etc. [26], and Average is chosen in our work.

�������� ��� ��������������� �����,� ��	������

��
���,�� ����
����,
����
����� 	������
��� ���� �� ��� �����	��� ��� ����

����������

���� �� �������� ��� �,,����� �������
,�� ���	�	�,����

3.3.1 Item ID and its a�ribute IDs. Item is the core interactive
unit in E-commerce and it has many attribute IDs, including prod-
uct ID, store ID, brand ID and category ID etc. We here give a
brief illustration about them. The “product” is a basic concept, e.g.,
“iPhone X” sold in di�erent stores shares the same product ID. When
one product is sold in several stores, it has a speci�c item ID in each
store (indicated by store ID). Each product belongs to some brand
(indicated by brand ID) and some categories (indicated by category
IDs). It is noteworthy that category IDs have many levels, such as
cate-level1 ID, cate-level2 ID and cate-level3 ID etc. Although many
other attributes IDs can be considered, we focus on seven types
of IDs in this paper without loss of generality. They are item ID,
product ID, store ID, brand ID, cate-level1 ID, cate-level2 ID and
cate-level3 ID.

3.3.2 User ID. A user can be identi�ed by the user ID, such as
cookie, device IMEI, or log-in username etc.

3.4 Jointly Embedding Attribute IDs
By exploring the structural connections between item ID and its
attribute IDs, we propose a hierarchical embedding model to jointly
learn low-dimensional representations for item ID as well as its
attribute IDs. The architecture of the proposed model is shown in
Figure 4, where the item ID is the core interactive unit and it is
connected to its attribute IDs by dashed lines.

Figure 4: The architecture of our jointly embedding model.

Firstly, the co-occurrence of item IDs also implicates the co-
occurrence of corresponding attribute IDs, which is indicated by
solid arrows in Figure 4. Supposing there are K(k = 1, . . . ,K) types
of IDs in the �rst group (as mentioned in 3.3.1), let IDs(itemi) =
[id1(itemi), . . . , idk (itemi), . . . , idK (itemi)], where id1(itemi) equals
itemi , and id2(itemi) is the product ID, id3(itemi) is the store ID
and so on. Then we replace Eq. 3 with:

p
�
IDs(itemj)|IDs(itemi)

�

=�

 K’
k=1

(w jke0jk)
T(wikeik)

!

S÷
s=1

�

�

K’
k=1

(wske0sk)
T(wikeik)

!
,

(7)

where e0·k 2 E0k (⇢ R
mk⇥Dk) and e·k 2 Ek (⇢ Rmk⇥Dk). E0k and

Ek are matrices that correspond to the context and target repre-
sentations of type k(k = 1, . . . ,K) respectively. For type k ,mk is
the dimension of its embedding vectors and Dk is the size of its
dictionary. Note that di�erent types of IDs can be embedded into
di�erent dimensions. The scalarwik is the weight of idk (itemi). As-
suming each item contributes equally to idk (itemi) and idk (itemi)
contains Vik di�erent items, it is reasonable to letwik be inversely
proportional to Vik . More formally, we have

I(x) =
⇢
0 ,x is False
1 ,x is True , (8)

Vik =
D’
j=1

I
�
idk (itemi) = idk (itemj)

�
, (9)

wik =
1

Vik
(k = 1, . . . ,K). (10)

For instance,wi1 = 1 as each id1(itemi) contains exactly one item,
andwi2 =

1
10 if product ID(itemi) contains ten di�erent items.

Secondly, structural connections between the item ID and at-
tribute IDsmean constraints, e.g., the vectors of two item IDs should
be close not only for their co-occurrence but also for their sharing
the same product ID, store ID, brand ID or cate-level1 ID etc. Con-
versely, attribute IDs should assimilate the information contained
in corresponding item IDs. Taking store ID as an example, the em-
bedding vector of a speci�c store ID should be the proper summary
of all item IDs sold in it. Consequently we de�ne:

p(itemi |IDs(itemi)) = �

 K’
k=2

wikeTi1Mkeik

!
, (11)

whereMk ⇢ Rm1⇥mk (k = 2, . . . ,K) is the matrix that transforms
embedding vector ei1 into the same dimension with embedding
vector eik . Then we maximize the following average log probability
instead of Eq. 1:

J = 1
N

N’
n=1

©≠
´
1n+jN , j,0’

�CjC
logp(IDs(itemn+j)|IDs(itemn))

+� logp(itemn |IDs(itemn)) � �
K’
k=1

| |Mk | |2
!
,

(12)

where � is the strength of constraints among IDs and � is the
strength of L2 regularization on transformation matrices.

Our approach embeds the item ID and its attribute IDs into one
semantic space, which is a useful property for deploying and trans-
ferring these representations in real world scenarios. As the proper-
ties of item ID and its attribute IDs remain stable for a relative long
time, the jointly embedding model and the learned representations
are updated weekly in our work.

3.5 Embedding User IDs
The user preferences can be re�ected from their interactive se-
quences of item IDs, and thus it is reasonable to represent the user
IDs by aggregating embedding vectors of the interactive item IDs.
There are many methods to aggregate item embedding vectors,
e.g. Average, RNN etc. [26], and Average is chosen in our work.

3.3.1 Item ID and its a�ribute IDs. Item is the core interactive
unit in E-commerce and it has many attribute IDs, including prod-
uct ID, store ID, brand ID and category ID etc. We here give a
brief illustration about them. The “product” is a basic concept, e.g.,
“iPhone X” sold in di�erent stores shares the same product ID. When
one product is sold in several stores, it has a speci�c item ID in each
store (indicated by store ID). Each product belongs to some brand
(indicated by brand ID) and some categories (indicated by category
IDs). It is noteworthy that category IDs have many levels, such as
cate-level1 ID, cate-level2 ID and cate-level3 ID etc. Although many
other attributes IDs can be considered, we focus on seven types
of IDs in this paper without loss of generality. They are item ID,
product ID, store ID, brand ID, cate-level1 ID, cate-level2 ID and
cate-level3 ID.

3.3.2 User ID. A user can be identi�ed by the user ID, such as
cookie, device IMEI, or log-in username etc.

3.4 Jointly Embedding Attribute IDs
By exploring the structural connections between item ID and its
attribute IDs, we propose a hierarchical embedding model to jointly
learn low-dimensional representations for item ID as well as its
attribute IDs. The architecture of the proposed model is shown in
Figure 4, where the item ID is the core interactive unit and it is
connected to its attribute IDs by dashed lines.

Figure 4: The architecture of our jointly embedding model.

Firstly, the co-occurrence of item IDs also implicates the co-
occurrence of corresponding attribute IDs, which is indicated by
solid arrows in Figure 4. Supposing there are K(k = 1, . . . ,K) types
of IDs in the �rst group (as mentioned in 3.3.1), let IDs(itemi) =
[id1(itemi), . . . , idk (itemi), . . . , idK (itemi)], where id1(itemi) equals
itemi , and id2(itemi) is the product ID, id3(itemi) is the store ID
and so on. Then we replace Eq. 3 with:

p
�
IDs(itemj)|IDs(itemi)

�

=�

 K’
k=1

(w jke0jk)
T(wikeik)

!

S÷
s=1

�

�

K’
k=1

(wske0sk)
T(wikeik)

!
,

(7)

where e0·k 2 E0k (⇢ R
mk⇥Dk) and e·k 2 Ek (⇢ Rmk⇥Dk). E0k and

Ek are matrices that correspond to the context and target repre-
sentations of type k(k = 1, . . . ,K) respectively. For type k ,mk is
the dimension of its embedding vectors and Dk is the size of its
dictionary. Note that di�erent types of IDs can be embedded into
di�erent dimensions. The scalarwik is the weight of idk (itemi). As-
suming each item contributes equally to idk (itemi) and idk (itemi)
contains Vik di�erent items, it is reasonable to letwik be inversely
proportional to Vik . More formally, we have

I(x) =
⇢
0 ,x is False
1 ,x is True , (8)

Vik =
D’
j=1

I
�
idk (itemi) = idk (itemj)

�
, (9)

wik =
1

Vik
(k = 1, . . . ,K). (10)

For instance,wi1 = 1 as each id1(itemi) contains exactly one item,
andwi2 =

1
10 if product ID(itemi) contains ten di�erent items.

Secondly, structural connections between the item ID and at-
tribute IDsmean constraints, e.g., the vectors of two item IDs should
be close not only for their co-occurrence but also for their sharing
the same product ID, store ID, brand ID or cate-level1 ID etc. Con-
versely, attribute IDs should assimilate the information contained
in corresponding item IDs. Taking store ID as an example, the em-
bedding vector of a speci�c store ID should be the proper summary
of all item IDs sold in it. Consequently we de�ne:

p(itemi |IDs(itemi)) = �

 K’
k=2

wikeTi1Mkeik

!
, (11)

whereMk ⇢ Rm1⇥mk (k = 2, . . . ,K) is the matrix that transforms
embedding vector ei1 into the same dimension with embedding
vector eik . Then we maximize the following average log probability
instead of Eq. 1:

J = 1
N

N’
n=1

©≠
´
1n+jN , j,0’

�CjC
logp(IDs(itemn+j)|IDs(itemn))

+� logp(itemn |IDs(itemn)) � �
K’
k=1

| |Mk | |2
!
,

(12)

where � is the strength of constraints among IDs and � is the
strength of L2 regularization on transformation matrices.

Our approach embeds the item ID and its attribute IDs into one
semantic space, which is a useful property for deploying and trans-
ferring these representations in real world scenarios. As the proper-
ties of item ID and its attribute IDs remain stable for a relative long
time, the jointly embedding model and the learned representations
are updated weekly in our work.

3.5 Embedding User IDs
The user preferences can be re�ected from their interactive se-
quences of item IDs, and thus it is reasonable to represent the user
IDs by aggregating embedding vectors of the interactive item IDs.
There are many methods to aggregate item embedding vectors,
e.g. Average, RNN etc. [26], and Average is chosen in our work.

����������	���-� �
�

�	��� ��
-�� �

	-	�� ���-	�

����������	���-� �

�����������- ��-���	�	�����	��-��� ��

�����.�, ��� �����������.��� ���� ��

�����! ����������� ��� ��������� : ���.� .�������.�� ��������� �� .��� ����

��� ��� �����������.�� �� ���� ��� ��� � ���.��� : �,,��,��.�, �����.�, �������

�� .�������.�� .��� ����

�� ��� �����.�, ������� �� ���� ��� ������ � ������� ���������: �� ������� ��� ������

����������� �����,� .� ������ .������ �� 	�� ����

Since the preferences of users in Hema change quickly, the em-
bedding vectors of user IDs should be updated frequently (such
as updated daily), to immediately re�ect the latest preference. Un-
like the RNN model, which needs the training procedure and is
very computational expensive, Average is able to learn and update
representations in short periods of time.

For user u 2 U , let Su = [item1, . . . , itemt , . . . , itemT] denote
the interactive sequence, where the recent T item IDs are arranged
in reverse chronological order. We construct the embedding vector
for user u by:

Embedding(u) = 1
T

T’
t=1

et , (13)

where et is the embedding vector of itemt .

3.6 Model Learning
Optimizing the jointly embedding model is equivalent to maximiz-
ing the log-likelihood given by Eq. 12, which is approximated by
log-uniform negative-sampling (as shown in Eq. 7). To solve the
optimization problem, we �rst initialize all trainable parameters
using “Xavier” initialization [12]. After that we apply the Stochastic
Gradient Descent (SGD) algorithm to J with shu�ed mini-batches.
The parameters are updated through back propagation (see [13]
for its principle) with Adam rule [17]. To exploit the parallelism
of operations for speeding up, we train our neural network on the
NVIDIA-GPU with Tensor�ow [1].

The hyper-parameters in our model are set as follows: the length
of the context window is C = 4; the number of negative samples is
S = 2; the embedding dimensions are [m1,m2,m3,m4,m5,m6,
m7] = [100, 100, 10, 20, 10, 10, 20]; the strength of constraints is
� = 1.0; the strength of L2 regularization on transformations is
� = 0.01; the batch size is 128 and the neural network is trained for
5 epochs.

4 DEPLOYING IDS REPRESENTATION
The low-dimensional representations learned by our approach can
be e�ectively deployed in many applications in E-commerce. In this
section, we give four real-world examples in Hema App.

4.1 Measuring Items Similarity
Computing item-item relationships is a key building block in mod-
ern recommendation systems. These relationships are extensively
used in many recommendation tasks. One classic task is “People
also like”, in which similar items are recommended to users based on
the item they are viewing. Most online stores, e.g., Amazon, Taobao,
Net�x and iTunes store etc., provide similar recommendation lists.
Another classic task is to prepare for user-item recommendations,
where Click Through Rates (CTR) are calculated between users
and items (as mentioned in Section 2). One typical choice of trig-
ger is visited items and the candidate set is constructed based on
item-item similarities. Given user u, we take the items interacted
by u in recent past as the seed set (denoted by SEED(u)). For each
seedi 2 SEED(u), we take into account its top-N similar items and
the candidate set for user u is:

candidate(u) =
ÿ

seedi 2SEED(u)
(top-N similar items of seedi). (14)

The item-based Collaborative Filtering (CF) [21, 30] is a famous
method of calculating item-item similarities. It calculates similarity
scores using user-item interactions. However, user-item relation-
ships are not always available. A large proportion of interactions in
online shopping has no explicit user identi�cation. Instead, the ses-
sion identi�cation is available in most situations. We will see that
measuring item similarities by cosine distances among embedding
vectors has a higher recall score than the classical item-based CF
algorithm. In practice, by integrating the new similarities into orig-
inal scores calculated by CF algorithm, the performance of online
recommendation system is signi�cantly improved.

4.2 Transferring from Seen Items to Unseen
Items

New items cause the cold-start problem, which means item IDs
with no historical records are invisible to recommendation systems
[31]. Many existing methods cannot process new items, including
item-based CF and original item2vec [3] etc. Several content-based
approaches are proposed to address this problem, such as image-
based [22] and text-based [35] recommendations. In this paper, we
propose a new method to relieve the cold-start problem on unseen
items, where an approximate embedding vector is constructed for
the new item ID. It is facilitated by themeasurability of relationships
among heterogeneous IDs.

The basic idea is that IDs connected to the new item ID usually
have historical records. For instance, given a new item, its corre-
sponding product is likely sold elsewhere and the corresponding
store has already sold other items. Therefore we can construct an
approximate embedding vector for the new item ID from the em-
bedding vectors of IDs connected to it. Since � is a monotonically
increasing function, we can derive Eq. 11 as following:

p(itemi |IDs(itemi))

= �

 K’
k=2

wikeTi1Mkeik

!

/
K’
k=2

wikeTi1Mkeik

= eTi1

 K’
k=2

wikMkeik

!
.

(15)

Maximizing the log-likelihood given by Equation 12 leads to
p(itemi |IDs(itemi)) ! 1 and thus it is reasonable to approximate
ei1 according to:

p(itemi |IDs(itemi)) ! 1

) eTi1

 K’
k=2

wikMkeik

!
is relatively large

) ei1 ⇡
K’
k=2

wikeTikM
T
k .

(16)

We here assume every connected idk (k = 2, . . . ,K) has historical
records for simplicity. In practice, we only take into account the idk
which has historical records. Actually, the more connected IDs are

����.���� ��� ��������2	2�.�

���� ���� �2 ���	��� ����	2.����	�������.������������..����

��	�����
����

��	�������������2����	������������

 �������
����
�����	����

��	������������
2�������2��2.������.�����

��-���� � � �
��
�
�����-�

��� �����

������
������
�	�-���

 ���
�
��� -������

���� ����	���

������
������
�	�-���

 ���
�
���������

���� �����

������
��������-��
�

����
����-�
���

����
��

 ���������������

��
����
��
�
����-�����

��	�����
����� ����	���

�	�����
 ��� �	��	�	�������� �	����	�������

�	��.��� �0� �����	.�02

��	 ��������� �	��		� ��� ��	� ��� ��� �	 �	����	� ���

taken into account, the better approximation we can get. The ex-

perimental results show that the constructed vector
KÕ
k=2

wikeTikM
T
k

is very encouraging.

4.3 Transferring across Di�erent Domains
For emerging platforms like Hema, a high proportion of users are
new customers, and thus the personalized recommendation is very
challenging. In this work, we transfer the preferences of users
on long existing platforms (source domain), onto the emerging
platform (target domain) to overcome this challenge. Since Taobao
covers the majority of E-commerce users in China, we select it as
the source domain.

Figure 5: The process of transferring user vectors across dif-
ferent domains.

Let U s and U t denote the user set in source domain and target
domain respectively, and let U i denote their intersection U s —U t .
The overall process is shown in Figure 5. Firstly, user vectors forU s

are calculated via aggregating embedding vectors of the interactive
item IDs in Taobao, which is detailed in Section 3.5. Secondly, based
on the similarities measured by embedding vectors, users in U i

are clustered into 1000 groups by k-means. Thirdly, for each group,
the top N most popular Hema items within it are selected as the
candidate set. Fourthly, the new coming user inU s \U t is assigned
to the most similar group according to the similarities between the
user vector and the group centers. Finally, taking assigned group
as the trigger, corresponding candidate set is recommended to the
new user after being �ltered and ranked accordingly.

There are two alternative aggregating manners: naive average
and weighted average. In the weighted average, di�erent interactive
items have di�erent weights:

wt =
’

u0 2U i

IA(u 0, itemt),

IA(x) =
⇢
0, u 0 has no interaction on itemt
Aj , u 0 has interaction j on itemt

.

(17)

In this way, the items that are similar to items in the target domain
have higher weights. The Aj for di�erent types of interactions
are tuned by online experiments, e.g. purchase is more heavily
weighted than click. Subsequently for user u 2 U s , the embedding
vector in Eq. 13 is extended to:

Embedding(u) =
ÕT
t=1wtetÕT
t=1wt

. (18)

We will see that even naive average brings signi�cant improve-
ment, and weighted average further ampli�es the improvement.

4.4 Transferring across Di�erent Tasks
Sales forecast is very helpful for making informed business deci-
sions in E-commerce. It can help to manage the workforce, cash
�ow and resources, such as optimizing the delivery process. We
here consider the problem of forecasting the delivery demand of
each store per 30 minutes in the next day. The forecast results can
guide us to pre-order appropriate number of delivery sta�.

The value of sales forecast depends on its accuracy and inaccu-
rate forecasts deteriorate decision e�ciency. Ordering too many
delivery sta� leads to manpower waste and ordering insu�cient
delivery sta� causes that orders cannot be delivered in time. Typical
forecast techniques take historical sales data as input. However, the
store ID is also very useful since di�erent stores follow di�erent
patterns, and the forecasting model should be able to distinguish
them. One classical way to consider store ID is one-hot encoding,
which treats store IDs as atomic units. Although the simplicity and
robustness make it very popular in statistical models, it has several
limitations, as mentioned in Section 1.

In this paper, we use the embedding vectors learned by our
model to represent store IDs. To forecast the delivery demand, we
take both historical sales data and embedding vectors as the input.
Following the input layer, several full connections with activation
function are used to extract high order representations. Formally,
let h0 denote the input layer, then the output of each hidden layer
i(i = 1, . . . ,N) is:

hi = a(Wihi�1 + bi). (19)
The element-wise activation function a(·) makes the network ca-
pable of learning non-linear functions. In practice, we choose the
ReLU (Recti�ed Linear Unit de�ned as max(0, x)) due to its sim-
plicity and computing e�ciency. Wi is the a�ne transformation
of hidden layer i and bi is the corresponding bias term. After all
hidden layers, we use the linear regression to forecast the delivery
demand �̂i :

�̂i = wT hN + b . (20)
We train the model to minimize the Mean Absolute Error (MAE)

and the learning details are similar to Section 3.6. We will see that
these embedding vectors are more e�ective in representing stores
than the one-hot encoding.

5 EXPERIMENTS
In this section, we present the empirical evaluation of our approach
in real-word scenarios of Hema App.

5.1 Measuring Items Similarity
The item-item similarities are extensively used in many recommen-
dation tasks, including “People also like” and CTR prediction etc.
The similarity between two item IDs can be measured by the cosine
similarity between their vectors:

sim(itemi , itemj) = cos(vi , vj) =
vTi vj

| |vi | |2 · | |vj | |2
. (21)

When training our model, historical interaction data in the past
14 days are used. We construct the candidate set for each user ui
as described in Section 4.1, and measure the o�ine performance
of di�erent methods by the click recall@top-N of the generated

Table 1: The click recall@top-N of all methods (higher is better).

top-N 10 20 30 40 50 60 70 80 90 100 1000

weekday CF 2.46% 4.46% 6.07% 7.44% 8.66% 9.82% 10.88% 11.82% 12.69% 13.49% 29.83%
ITEM2VEC 4.72% 7.46% 9.43% 11.00% 12.35% 13.53% 14.16% 14.73% 15.26% 15.74% 30.35%

weekend CF 3.44% 6.18% 8.46% 10.39% 12.12% 13.65% 15.05% 16.32% 17.49% 18.57% 42.33%
ITEM2VEC 6.49% 10.42% 13.29% 15.58% 17.48% 19.04% 19.81% 20.55% 21.23% 21.88% 43.34%

Table 2: The click recall@top-1000 of all methods at di�erent popularity levels (higher is better).

popular-level 1 2 3 4 5 6 7 8 9 10
CF 22.67% 31.53% 36.81% 39.85% 43.17% 46.72% 47.22% 47.50% 45.85% 58.27%

ITEM2VEC 25.13% 40.44% 45.02% 47.14% 49.33% 51.34% 49.70% 49.72% 47.99% 48.97%

Table 3: The click recall@top-N of baselines and constructed vectors (higher is better).

top-N 10 20 30 40 50 60 70 80 90 100 1000

weekday
RANDOM 0.01% 0.01% 0.02% 0.03% 0.04% 0.04% 0.05% 0.06% 0.07% 0.07% 0.53%

HOT 1.60% 2.46% 3.19% 3.77% 4.36% 4.83% 5.39% 5.86% 6.39% 6.97% 27.67%
NEW2VEC 4.56% 7.05% 8.73% 9.94% 10.88% 11.63% 11.75% 11.87% 11.99% 12.11% 16.95%

weekend
RANDOM 0.00% 0.01% 0.02% 0.03% 0.04% 0.05% 0.06% 0.07% 0.08% 0.08% 0.70%

HOT 1.69% 2.51% 3.19% 3.79% 4.35% 4.83% 5.42% 6.00% 6.53% 7.13% 27.75%
NEW2VEC 6.26% 9.86% 12.27% 14.02% 15.33% 16.37% 16.47% 16.56% 16.66% 16.75% 21.89%

Table 4: The RMAE scores of di�erent methods in forecast-
ing delivery demand (lower is better).

dataset day 1 day 2 day 3
HISTORY 43.23% 40.75% 34.26%

HISTORY with ONE-HOT 42.57% 39.00% 34.57%
HISTORY with VEC 40.95% 33.75% 33.02%

and distance unavailability. The embedding vectors of store IDs
learned by our embedding model can overcome those limitations.
By taking full advantage of the information contained in store IDs,
our model achieves much more improvements.

6 RELATEDWORK
Many machine intelligence techniques, such as recommendation
[8] and forecast [4] etc., are developed to handle the dynamic and
complex business environment in E-commerce. The performance
of these intelligence techniques is heavily dependent on the data
representation and thus representation learning has been a very
popular topic for a while [5]. Recently, many works focus on a
speci�c family of representation learning methods, namely neural
networks (or deep learning). It is inspired by the nervous system
and consists of multiple non-linear transformations. Representation
learning with neural networks has brought remarkable successes
to both academia and industry [7, 14, 18].

The unordered discrete data (or called IDs) is one of the most
important types of data in many scenarios. The word in Natural

Language Processing (NLP) is a typical example of IDs. Traditional
techniques treat them as atomic units and represent them as indices
or one-hot encodings. This simple and robust choice has many limi-
tations, including sparsity and distance unavailability. To overcome
these limitations, low-dimensional distributed representations are
proposed, which can be traced back to the classical neural network
language model [6]. They jointly learn the word embedding vector
and the statistical language model with a linear projection layer and
a non-linear hidden layer. It was later shown that word embedding
vectors signi�cantly improve and simplify many NLP applications
[10, 11]. However, the original neural network language model
is very computationally expensive since it involves many dense
matrix multiplications. Mikolov et al. introduced the skip-gram
model [23] (also well-known as word2vec), which predicts the sur-
rounding context words given the target word to avoid many dense
matrix multiplications. Although word2vec is very e�cient to learn
high-quality embedding vectors of words, Mikolov et al. used the
negative-sampling to approximate full softmax to reduce the com-
putation further [24]. Their works have been followed by many
others. Le et al. developed an algorithm to represent each document
with a vector by training a language model to predict words in the
document [19]. Li et al. [20] and Yamada et al. [34] both jointly
map words and entities (from the knowledge base) into the same
semantic vector space.

Embedding techniques have drawn many attentions from vari-
ous domains beyond the original NLP domain. Perozzi et al. [28],
Tang et al. [33] and Grover et al. [15] established an analogy for
networks by representing a network as a “document”. They sample

candidate set in the next day:

recall@top-N =
Õ
ui #{hits in top-N}uiÕ
ui #{total clicks}ui

. (22)

Given a user ui , the term #{hits in top-N}ui denotes the number
of clicked items hit by candidate set and the term #{total clicks}ui
denotes the total number of clicked items.

Table 1 shows the experimental results about click recall@top-N
of two methods. As we can see, the low-dimensional embedding
methods outperform item-based CF method [21, 30] signi�cantly,
especially when N is small. The reason is that item-based CF needs
explicit user-item relationships and they are not always available.
Instead of explicit user identi�cation, the available information is
session identi�cation and skip-gram on the interaction sequence
can take advantage of all data. A noticeable phenomenon is that
the recall@top-N over the weekend is higher than the weekday,
which is consistent with the experiences in our daily life.

To get a better understanding about the improvements, we uni-
formly divide all items from the weekend dataset into 10 popularity
levels according to their frequencies of interactions. After that
we calculate the click recall@top-1000 at each level and show the
experimental results in Table 2. Although unpopular items have
few explicit user-item relationships, they appear in a considerable
number of interaction sequences. Therefore embedding methods
achieve better results, whereas the item-based CF method cannot
deal with unpopular items very well.

In the online recommendation system, by integrating the new
similarities into original scores calculated by CF algorithm, the �nal
recall increases by 24.0%.

5.2 Transferring from Seen Items to Unseen
Items

New items cause cold-start problem, and many methods cannot
process them. We attempt to relieve the cold-start problem by con-
structing an approximate embedding vector for the new item ID.
Since item-based CF cannot perceive item IDs with no historical
records, we compare our approximation to the baselines where
candidate sets consist of random or hot item IDs. We measure the
performance of di�erent methods by the click recall@top-N of the
generated candidate set in the next day.

Table 3 shows the experimental results about click recall@top-N
of baselines and our method. As we can see, the performance of
constructed vectors is competitive. Considering that the classic
item-based CF cannot deal with new item IDs at all, our approach
is very encouraging. The recall@top-N on the weekend is higher
than the weekday, which is similar to Section 5.1.

On closer inspection, when N is less than 50 the click recall is
comparable to that using item ID embedding vectors directly. When
N is beyond 50, few improvements can be achieved. That reveals the
limitation of our approach: the approximation is accurate when N is
small and the approximation becomes inaccurate while N increases.
In practice, the problem brought by this limitation is negligible
in that the number of items we can recommend to a user is very
limited.

5.3 Transferring across Di�erent Domains
Since new users have no historical records, it is impossible to eval-
uate di�erent methods o�ine. Instead, we conduct an A/B test over
one week and three methods are compared:

• Hot. The baseline is recommending the same list containing
hot items to each new user.

• Naive average. Through transferring the preferences of
users on Taobao to Hema, personalized recommendation is
provided to each new user. In this method, the user vector is
generated by naive average.

• Weighted average.When generating user vectors, di�erent
weights are here assigned to di�erent interactive items and
the weighted average is adopted.

Performances of di�erent methods are evaluated by Pay-Per-
Impression (PPM). Compared to the baseline, the naive average
increased PPM by 71.4% and the weighted average increased PPM
by 141.8%. The signi�cant improvements demonstrate that user
embedding vectors learned by our approach can be e�ectively trans-
ferred across di�erent domains to overcome the cold-start problem
brought by new users.

5.4 Transferring across Di�erent Tasks
We here consider the problem of forecasting the delivery demand
of each store per 30 minutes on the next day. The forecast results
can guide us to pre-order appropriate number of delivery sta�. We
compare our embedding vectors against several baselines:

• HISTORY. The typical forecast techniques take historical
sales data as the input. For every 30-minute interval of each
store, the input contains the delivery demands in the same
time interval on the recent 7 days.

• HISTORYwith ONE-HOT. The store ID is also very useful
since di�erent stores follow di�erent patterns. One classical
way to consider store ID is one-hot encoding, which treats
store IDs as atomic units. Besides the historical data, we here
also take the one-hot encoding as part of the input.

• HISTORY with VEC. One-hot encoding has several limita-
tions, such as sparsity and similarity immeasurability etc. We
represent the store ID using the embedding vector learned
by our embedding model and take it as part of the input
instead of one-hot encoding.

There are �ve full connection layers of size 128 in every alterna-
tive methods. We measure the performance of di�erent methods
by the Relative Mean Absolute Error (RMAE):

RMAE =
ÕN
i=1 |�i � �̂i |ÕN

i=1 �i
, (23)

where �i is the true delivery demand and �̂i is the forecasted de-
livery demand. Note that it is di�erent from the Mean Absolute
Percentage Error (MAPE). RMAE actually is an equivalent variety
of MAE since

ÕN
i=1 �i is a constant for a certain dataset.

The RMAE scores of di�erent methods in forecasting delivery
demand are shown in Table 4. We repeat the experiment on 3
di�erent days to con�rm the improvement. As we can see, the
store IDs are very useful and even one-hot encoding can bring
improvements. However, one-hot encoding is plagued by its sparsity

candidate set in the next day:

recall@top-N =
Õ
ui #{hits in top-N}uiÕ
ui #{total clicks}ui

. (22)

Given a user ui , the term #{hits in top-N}ui denotes the number
of clicked items hit by candidate set and the term #{total clicks}ui
denotes the total number of clicked items.

Table 1 shows the experimental results about click recall@top-N
of two methods. As we can see, the low-dimensional embedding
methods outperform item-based CF method [21, 30] signi�cantly,
especially when N is small. The reason is that item-based CF needs
explicit user-item relationships and they are not always available.
Instead of explicit user identi�cation, the available information is
session identi�cation and skip-gram on the interaction sequence
can take advantage of all data. A noticeable phenomenon is that
the recall@top-N over the weekend is higher than the weekday,
which is consistent with the experiences in our daily life.

To get a better understanding about the improvements, we uni-
formly divide all items from the weekend dataset into 10 popularity
levels according to their frequencies of interactions. After that
we calculate the click recall@top-1000 at each level and show the
experimental results in Table 2. Although unpopular items have
few explicit user-item relationships, they appear in a considerable
number of interaction sequences. Therefore embedding methods
achieve better results, whereas the item-based CF method cannot
deal with unpopular items very well.

In the online recommendation system, by integrating the new
similarities into original scores calculated by CF algorithm, the �nal
recall increases by 24.0%.

5.2 Transferring from Seen Items to Unseen
Items

New items cause cold-start problem, and many methods cannot
process them. We attempt to relieve the cold-start problem by con-
structing an approximate embedding vector for the new item ID.
Since item-based CF cannot perceive item IDs with no historical
records, we compare our approximation to the baselines where
candidate sets consist of random or hot item IDs. We measure the
performance of di�erent methods by the click recall@top-N of the
generated candidate set in the next day.

Table 3 shows the experimental results about click recall@top-N
of baselines and our method. As we can see, the performance of
constructed vectors is competitive. Considering that the classic
item-based CF cannot deal with new item IDs at all, our approach
is very encouraging. The recall@top-N on the weekend is higher
than the weekday, which is similar to Section 5.1.

On closer inspection, when N is less than 50 the click recall is
comparable to that using item ID embedding vectors directly. When
N is beyond 50, few improvements can be achieved. That reveals the
limitation of our approach: the approximation is accurate when N is
small and the approximation becomes inaccurate while N increases.
In practice, the problem brought by this limitation is negligible
in that the number of items we can recommend to a user is very
limited.

5.3 Transferring across Di�erent Domains
Since new users have no historical records, it is impossible to eval-
uate di�erent methods o�ine. Instead, we conduct an A/B test over
one week and three methods are compared:

• Hot. The baseline is recommending the same list containing
hot items to each new user.

• Naive average. Through transferring the preferences of
users on Taobao to Hema, personalized recommendation is
provided to each new user. In this method, the user vector is
generated by naive average.

• Weighted average.When generating user vectors, di�erent
weights are here assigned to di�erent interactive items and
the weighted average is adopted.

Performances of di�erent methods are evaluated by Pay-Per-
Impression (PPM). Compared to the baseline, the naive average
increased PPM by 71.4% and the weighted average increased PPM
by 141.8%. The signi�cant improvements demonstrate that user
embedding vectors learned by our approach can be e�ectively trans-
ferred across di�erent domains to overcome the cold-start problem
brought by new users.

5.4 Transferring across Di�erent Tasks
We here consider the problem of forecasting the delivery demand
of each store per 30 minutes on the next day. The forecast results
can guide us to pre-order appropriate number of delivery sta�. We
compare our embedding vectors against several baselines:

• HISTORY. The typical forecast techniques take historical
sales data as the input. For every 30-minute interval of each
store, the input contains the delivery demands in the same
time interval on the recent 7 days.

• HISTORYwith ONE-HOT. The store ID is also very useful
since di�erent stores follow di�erent patterns. One classical
way to consider store ID is one-hot encoding, which treats
store IDs as atomic units. Besides the historical data, we here
also take the one-hot encoding as part of the input.

• HISTORY with VEC. One-hot encoding has several limita-
tions, such as sparsity and similarity immeasurability etc. We
represent the store ID using the embedding vector learned
by our embedding model and take it as part of the input
instead of one-hot encoding.

There are �ve full connection layers of size 128 in every alterna-
tive methods. We measure the performance of di�erent methods
by the Relative Mean Absolute Error (RMAE):

RMAE =
ÕN
i=1 |�i � �̂i |ÕN

i=1 �i
, (23)

where �i is the true delivery demand and �̂i is the forecasted de-
livery demand. Note that it is di�erent from the Mean Absolute
Percentage Error (MAPE). RMAE actually is an equivalent variety
of MAE since

ÕN
i=1 �i is a constant for a certain dataset.

The RMAE scores of di�erent methods in forecasting delivery
demand are shown in Table 4. We repeat the experiment on 3
di�erent days to con�rm the improvement. As we can see, the
store IDs are very useful and even one-hot encoding can bring
improvements. However, one-hot encoding is plagued by its sparsity

����
� ��

����� �2�0��

��%.	��
2 �����

���-��,�� ��� �����������,��� ���..�����,��

�
�����

��� �
	� ���� ����� �	 ����� �����

��� ,��.� ���� �-������� ����-�.�� ��� ������,.��� �.����,�� ������ ���

��������� �� ��-,��� ����� 	�� ���, ,��� ,� ���� ����,���� ��� ������� �� ��� ,��. ���

����--� ���� �,����,�- �������

�,��

� ����

Since the preferences of users in Hema change quickly, the em-
bedding vectors of user IDs should be updated frequently (such
as updated daily), to immediately re�ect the latest preference. Un-
like the RNN model, which needs the training procedure and is
very computational expensive, Average is able to learn and update
representations in short periods of time.

For user u 2 U , let Su = [item1, . . . , itemt , . . . , itemT] denote
the interactive sequence, where the recent T item IDs are arranged
in reverse chronological order. We construct the embedding vector
for user u by:

Embedding(u) = 1
T

T’
t=1

et , (13)

where et is the embedding vector of itemt .

3.6 Model Learning
Optimizing the jointly embedding model is equivalent to maximiz-
ing the log-likelihood given by Eq. 12, which is approximated by
log-uniform negative-sampling (as shown in Eq. 7). To solve the
optimization problem, we �rst initialize all trainable parameters
using “Xavier” initialization [12]. After that we apply the Stochastic
Gradient Descent (SGD) algorithm to J with shu�ed mini-batches.
The parameters are updated through back propagation (see [13]
for its principle) with Adam rule [17]. To exploit the parallelism
of operations for speeding up, we train our neural network on the
NVIDIA-GPU with Tensor�ow [1].

The hyper-parameters in our model are set as follows: the length
of the context window is C = 4; the number of negative samples is
S = 2; the embedding dimensions are [m1,m2,m3,m4,m5,m6,
m7] = [100, 100, 10, 20, 10, 10, 20]; the strength of constraints is
� = 1.0; the strength of L2 regularization on transformations is
� = 0.01; the batch size is 128 and the neural network is trained for
5 epochs.

4 DEPLOYING IDS REPRESENTATION
The low-dimensional representations learned by our approach can
be e�ectively deployed in many applications in E-commerce. In this
section, we give four real-world examples in Hema App.

4.1 Measuring Items Similarity
Computing item-item relationships is a key building block in mod-
ern recommendation systems. These relationships are extensively
used in many recommendation tasks. One classic task is “People
also like”, in which similar items are recommended to users based on
the item they are viewing. Most online stores, e.g., Amazon, Taobao,
Net�x and iTunes store etc., provide similar recommendation lists.
Another classic task is to prepare for user-item recommendations,
where Click Through Rates (CTR) are calculated between users
and items (as mentioned in Section 2). One typical choice of trig-
ger is visited items and the candidate set is constructed based on
item-item similarities. Given user u, we take the items interacted
by u in recent past as the seed set (denoted by SEED(u)). For each
seedi 2 SEED(u), we take into account its top-N similar items and
the candidate set for user u is:

candidate(u) =
ÿ

seedi 2SEED(u)
(top-N similar items of seedi). (14)

The item-based Collaborative Filtering (CF) [21, 30] is a famous
method of calculating item-item similarities. It calculates similarity
scores using user-item interactions. However, user-item relation-
ships are not always available. A large proportion of interactions in
online shopping has no explicit user identi�cation. Instead, the ses-
sion identi�cation is available in most situations. We will see that
measuring item similarities by cosine distances among embedding
vectors has a higher recall score than the classical item-based CF
algorithm. In practice, by integrating the new similarities into orig-
inal scores calculated by CF algorithm, the performance of online
recommendation system is signi�cantly improved.

4.2 Transferring from Seen Items to Unseen
Items

New items cause the cold-start problem, which means item IDs
with no historical records are invisible to recommendation systems
[31]. Many existing methods cannot process new items, including
item-based CF and original item2vec [3] etc. Several content-based
approaches are proposed to address this problem, such as image-
based [22] and text-based [35] recommendations. In this paper, we
propose a new method to relieve the cold-start problem on unseen
items, where an approximate embedding vector is constructed for
the new item ID. It is facilitated by themeasurability of relationships
among heterogeneous IDs.

The basic idea is that IDs connected to the new item ID usually
have historical records. For instance, given a new item, its corre-
sponding product is likely sold elsewhere and the corresponding
store has already sold other items. Therefore we can construct an
approximate embedding vector for the new item ID from the em-
bedding vectors of IDs connected to it. Since � is a monotonically
increasing function, we can derive Eq. 11 as following:

p(itemi |IDs(itemi))

= �

 K’
k=2

wikeTi1Mkeik

!

/
K’
k=2

wikeTi1Mkeik

= eTi1

 K’
k=2

wikMkeik

!
.

(15)

Maximizing the log-likelihood given by Equation 12 leads to
p(itemi |IDs(itemi)) ! 1 and thus it is reasonable to approximate
ei1 according to:

p(itemi |IDs(itemi)) ! 1

) eTi1

 K’
k=2

wikMkeik

!
is relatively large

) ei1 ⇡
K’
k=2

wikeTikM
T
k .

(16)

We here assume every connected idk (k = 2, . . . ,K) has historical
records for simplicity. In practice, we only take into account the idk
which has historical records. Actually, the more connected IDs are

Since the preferences of users in Hema change quickly, the em-
bedding vectors of user IDs should be updated frequently (such
as updated daily), to immediately re�ect the latest preference. Un-
like the RNN model, which needs the training procedure and is
very computational expensive, Average is able to learn and update
representations in short periods of time.

For user u 2 U , let Su = [item1, . . . , itemt , . . . , itemT] denote
the interactive sequence, where the recent T item IDs are arranged
in reverse chronological order. We construct the embedding vector
for user u by:

Embedding(u) = 1
T

T’
t=1

et , (13)

where et is the embedding vector of itemt .

3.6 Model Learning
Optimizing the jointly embedding model is equivalent to maximiz-
ing the log-likelihood given by Eq. 12, which is approximated by
log-uniform negative-sampling (as shown in Eq. 7). To solve the
optimization problem, we �rst initialize all trainable parameters
using “Xavier” initialization [12]. After that we apply the Stochastic
Gradient Descent (SGD) algorithm to J with shu�ed mini-batches.
The parameters are updated through back propagation (see [13]
for its principle) with Adam rule [17]. To exploit the parallelism
of operations for speeding up, we train our neural network on the
NVIDIA-GPU with Tensor�ow [1].

The hyper-parameters in our model are set as follows: the length
of the context window is C = 4; the number of negative samples is
S = 2; the embedding dimensions are [m1,m2,m3,m4,m5,m6,
m7] = [100, 100, 10, 20, 10, 10, 20]; the strength of constraints is
� = 1.0; the strength of L2 regularization on transformations is
� = 0.01; the batch size is 128 and the neural network is trained for
5 epochs.

4 DEPLOYING IDS REPRESENTATION
The low-dimensional representations learned by our approach can
be e�ectively deployed in many applications in E-commerce. In this
section, we give four real-world examples in Hema App.

4.1 Measuring Items Similarity
Computing item-item relationships is a key building block in mod-
ern recommendation systems. These relationships are extensively
used in many recommendation tasks. One classic task is “People
also like”, in which similar items are recommended to users based on
the item they are viewing. Most online stores, e.g., Amazon, Taobao,
Net�x and iTunes store etc., provide similar recommendation lists.
Another classic task is to prepare for user-item recommendations,
where Click Through Rates (CTR) are calculated between users
and items (as mentioned in Section 2). One typical choice of trig-
ger is visited items and the candidate set is constructed based on
item-item similarities. Given user u, we take the items interacted
by u in recent past as the seed set (denoted by SEED(u)). For each
seedi 2 SEED(u), we take into account its top-N similar items and
the candidate set for user u is:

candidate(u) =
ÿ

seedi 2SEED(u)
(top-N similar items of seedi). (14)

The item-based Collaborative Filtering (CF) [21, 30] is a famous
method of calculating item-item similarities. It calculates similarity
scores using user-item interactions. However, user-item relation-
ships are not always available. A large proportion of interactions in
online shopping has no explicit user identi�cation. Instead, the ses-
sion identi�cation is available in most situations. We will see that
measuring item similarities by cosine distances among embedding
vectors has a higher recall score than the classical item-based CF
algorithm. In practice, by integrating the new similarities into orig-
inal scores calculated by CF algorithm, the performance of online
recommendation system is signi�cantly improved.

4.2 Transferring from Seen Items to Unseen
Items

New items cause the cold-start problem, which means item IDs
with no historical records are invisible to recommendation systems
[31]. Many existing methods cannot process new items, including
item-based CF and original item2vec [3] etc. Several content-based
approaches are proposed to address this problem, such as image-
based [22] and text-based [35] recommendations. In this paper, we
propose a new method to relieve the cold-start problem on unseen
items, where an approximate embedding vector is constructed for
the new item ID. It is facilitated by themeasurability of relationships
among heterogeneous IDs.

The basic idea is that IDs connected to the new item ID usually
have historical records. For instance, given a new item, its corre-
sponding product is likely sold elsewhere and the corresponding
store has already sold other items. Therefore we can construct an
approximate embedding vector for the new item ID from the em-
bedding vectors of IDs connected to it. Since � is a monotonically
increasing function, we can derive Eq. 11 as following:

p(itemi |IDs(itemi))

= �

 K’
k=2

wikeTi1Mkeik

!

/
K’
k=2

wikeTi1Mkeik

= eTi1

 K’
k=2

wikMkeik

!
.

(15)

Maximizing the log-likelihood given by Equation 12 leads to
p(itemi |IDs(itemi)) ! 1 and thus it is reasonable to approximate
ei1 according to:

p(itemi |IDs(itemi)) ! 1

) eTi1

 K’
k=2

wikMkeik

!
is relatively large

) ei1 ⇡
K’
k=2

wikeTikM
T
k .

(16)

We here assume every connected idk (k = 2, . . . ,K) has historical
records for simplicity. In practice, we only take into account the idk
which has historical records. Actually, the more connected IDs are

Since the preferences of users in Hema change quickly, the em-
bedding vectors of user IDs should be updated frequently (such
as updated daily), to immediately re�ect the latest preference. Un-
like the RNN model, which needs the training procedure and is
very computational expensive, Average is able to learn and update
representations in short periods of time.

For user u 2 U , let Su = [item1, . . . , itemt , . . . , itemT] denote
the interactive sequence, where the recent T item IDs are arranged
in reverse chronological order. We construct the embedding vector
for user u by:

Embedding(u) = 1
T

T’
t=1

et , (13)

where et is the embedding vector of itemt .

3.6 Model Learning
Optimizing the jointly embedding model is equivalent to maximiz-
ing the log-likelihood given by Eq. 12, which is approximated by
log-uniform negative-sampling (as shown in Eq. 7). To solve the
optimization problem, we �rst initialize all trainable parameters
using “Xavier” initialization [12]. After that we apply the Stochastic
Gradient Descent (SGD) algorithm to J with shu�ed mini-batches.
The parameters are updated through back propagation (see [13]
for its principle) with Adam rule [17]. To exploit the parallelism
of operations for speeding up, we train our neural network on the
NVIDIA-GPU with Tensor�ow [1].

The hyper-parameters in our model are set as follows: the length
of the context window is C = 4; the number of negative samples is
S = 2; the embedding dimensions are [m1,m2,m3,m4,m5,m6,
m7] = [100, 100, 10, 20, 10, 10, 20]; the strength of constraints is
� = 1.0; the strength of L2 regularization on transformations is
� = 0.01; the batch size is 128 and the neural network is trained for
5 epochs.

4 DEPLOYING IDS REPRESENTATION
The low-dimensional representations learned by our approach can
be e�ectively deployed in many applications in E-commerce. In this
section, we give four real-world examples in Hema App.

4.1 Measuring Items Similarity
Computing item-item relationships is a key building block in mod-
ern recommendation systems. These relationships are extensively
used in many recommendation tasks. One classic task is “People
also like”, in which similar items are recommended to users based on
the item they are viewing. Most online stores, e.g., Amazon, Taobao,
Net�x and iTunes store etc., provide similar recommendation lists.
Another classic task is to prepare for user-item recommendations,
where Click Through Rates (CTR) are calculated between users
and items (as mentioned in Section 2). One typical choice of trig-
ger is visited items and the candidate set is constructed based on
item-item similarities. Given user u, we take the items interacted
by u in recent past as the seed set (denoted by SEED(u)). For each
seedi 2 SEED(u), we take into account its top-N similar items and
the candidate set for user u is:

candidate(u) =
ÿ

seedi 2SEED(u)
(top-N similar items of seedi). (14)

The item-based Collaborative Filtering (CF) [21, 30] is a famous
method of calculating item-item similarities. It calculates similarity
scores using user-item interactions. However, user-item relation-
ships are not always available. A large proportion of interactions in
online shopping has no explicit user identi�cation. Instead, the ses-
sion identi�cation is available in most situations. We will see that
measuring item similarities by cosine distances among embedding
vectors has a higher recall score than the classical item-based CF
algorithm. In practice, by integrating the new similarities into orig-
inal scores calculated by CF algorithm, the performance of online
recommendation system is signi�cantly improved.

4.2 Transferring from Seen Items to Unseen
Items

New items cause the cold-start problem, which means item IDs
with no historical records are invisible to recommendation systems
[31]. Many existing methods cannot process new items, including
item-based CF and original item2vec [3] etc. Several content-based
approaches are proposed to address this problem, such as image-
based [22] and text-based [35] recommendations. In this paper, we
propose a new method to relieve the cold-start problem on unseen
items, where an approximate embedding vector is constructed for
the new item ID. It is facilitated by themeasurability of relationships
among heterogeneous IDs.

The basic idea is that IDs connected to the new item ID usually
have historical records. For instance, given a new item, its corre-
sponding product is likely sold elsewhere and the corresponding
store has already sold other items. Therefore we can construct an
approximate embedding vector for the new item ID from the em-
bedding vectors of IDs connected to it. Since � is a monotonically
increasing function, we can derive Eq. 11 as following:

p(itemi |IDs(itemi))

= �

 K’
k=2

wikeTi1Mkeik

!

/
K’
k=2

wikeTi1Mkeik

= eTi1

 K’
k=2

wikMkeik

!
.

(15)

Maximizing the log-likelihood given by Equation 12 leads to
p(itemi |IDs(itemi)) ! 1 and thus it is reasonable to approximate
ei1 according to:

p(itemi |IDs(itemi)) ! 1

) eTi1

 K’
k=2

wikMkeik

!
is relatively large

) ei1 ⇡
K’
k=2

wikeTikM
T
k .

(16)

We here assume every connected idk (k = 2, . . . ,K) has historical
records for simplicity. In practice, we only take into account the idk
which has historical records. Actually, the more connected IDs are

Since the preferences of users in Hema change quickly, the em-
bedding vectors of user IDs should be updated frequently (such
as updated daily), to immediately re�ect the latest preference. Un-
like the RNN model, which needs the training procedure and is
very computational expensive, Average is able to learn and update
representations in short periods of time.

For user u 2 U , let Su = [item1, . . . , itemt , . . . , itemT] denote
the interactive sequence, where the recent T item IDs are arranged
in reverse chronological order. We construct the embedding vector
for user u by:

Embedding(u) = 1
T

T’
t=1

et , (13)

where et is the embedding vector of itemt .

3.6 Model Learning
Optimizing the jointly embedding model is equivalent to maximiz-
ing the log-likelihood given by Eq. 12, which is approximated by
log-uniform negative-sampling (as shown in Eq. 7). To solve the
optimization problem, we �rst initialize all trainable parameters
using “Xavier” initialization [12]. After that we apply the Stochastic
Gradient Descent (SGD) algorithm to J with shu�ed mini-batches.
The parameters are updated through back propagation (see [13]
for its principle) with Adam rule [17]. To exploit the parallelism
of operations for speeding up, we train our neural network on the
NVIDIA-GPU with Tensor�ow [1].

The hyper-parameters in our model are set as follows: the length
of the context window is C = 4; the number of negative samples is
S = 2; the embedding dimensions are [m1,m2,m3,m4,m5,m6,
m7] = [100, 100, 10, 20, 10, 10, 20]; the strength of constraints is
� = 1.0; the strength of L2 regularization on transformations is
� = 0.01; the batch size is 128 and the neural network is trained for
5 epochs.

4 DEPLOYING IDS REPRESENTATION
The low-dimensional representations learned by our approach can
be e�ectively deployed in many applications in E-commerce. In this
section, we give four real-world examples in Hema App.

4.1 Measuring Items Similarity
Computing item-item relationships is a key building block in mod-
ern recommendation systems. These relationships are extensively
used in many recommendation tasks. One classic task is “People
also like”, in which similar items are recommended to users based on
the item they are viewing. Most online stores, e.g., Amazon, Taobao,
Net�x and iTunes store etc., provide similar recommendation lists.
Another classic task is to prepare for user-item recommendations,
where Click Through Rates (CTR) are calculated between users
and items (as mentioned in Section 2). One typical choice of trig-
ger is visited items and the candidate set is constructed based on
item-item similarities. Given user u, we take the items interacted
by u in recent past as the seed set (denoted by SEED(u)). For each
seedi 2 SEED(u), we take into account its top-N similar items and
the candidate set for user u is:

candidate(u) =
ÿ

seedi 2SEED(u)
(top-N similar items of seedi). (14)

The item-based Collaborative Filtering (CF) [21, 30] is a famous
method of calculating item-item similarities. It calculates similarity
scores using user-item interactions. However, user-item relation-
ships are not always available. A large proportion of interactions in
online shopping has no explicit user identi�cation. Instead, the ses-
sion identi�cation is available in most situations. We will see that
measuring item similarities by cosine distances among embedding
vectors has a higher recall score than the classical item-based CF
algorithm. In practice, by integrating the new similarities into orig-
inal scores calculated by CF algorithm, the performance of online
recommendation system is signi�cantly improved.

4.2 Transferring from Seen Items to Unseen
Items

New items cause the cold-start problem, which means item IDs
with no historical records are invisible to recommendation systems
[31]. Many existing methods cannot process new items, including
item-based CF and original item2vec [3] etc. Several content-based
approaches are proposed to address this problem, such as image-
based [22] and text-based [35] recommendations. In this paper, we
propose a new method to relieve the cold-start problem on unseen
items, where an approximate embedding vector is constructed for
the new item ID. It is facilitated by themeasurability of relationships
among heterogeneous IDs.

The basic idea is that IDs connected to the new item ID usually
have historical records. For instance, given a new item, its corre-
sponding product is likely sold elsewhere and the corresponding
store has already sold other items. Therefore we can construct an
approximate embedding vector for the new item ID from the em-
bedding vectors of IDs connected to it. Since � is a monotonically
increasing function, we can derive Eq. 11 as following:

p(itemi |IDs(itemi))

= �

 K’
k=2

wikeTi1Mkeik

!

/
K’
k=2

wikeTi1Mkeik

= eTi1

 K’
k=2

wikMkeik

!
.

(15)

Maximizing the log-likelihood given by Equation 12 leads to
p(itemi |IDs(itemi)) ! 1 and thus it is reasonable to approximate
ei1 according to:

p(itemi |IDs(itemi)) ! 1

) eTi1

 K’
k=2

wikMkeik

!
is relatively large

) ei1 ⇡
K’
k=2

wikeTikM
T
k .

(16)

We here assume every connected idk (k = 2, . . . ,K) has historical
records for simplicity. In practice, we only take into account the idk
which has historical records. Actually, the more connected IDs are

Since the preferences of users in Hema change quickly, the em-
bedding vectors of user IDs should be updated frequently (such
as updated daily), to immediately re�ect the latest preference. Un-
like the RNN model, which needs the training procedure and is
very computational expensive, Average is able to learn and update
representations in short periods of time.

For user u 2 U , let Su = [item1, . . . , itemt , . . . , itemT] denote
the interactive sequence, where the recent T item IDs are arranged
in reverse chronological order. We construct the embedding vector
for user u by:

Embedding(u) = 1
T

T’
t=1

et , (13)

where et is the embedding vector of itemt .

3.6 Model Learning
Optimizing the jointly embedding model is equivalent to maximiz-
ing the log-likelihood given by Eq. 12, which is approximated by
log-uniform negative-sampling (as shown in Eq. 7). To solve the
optimization problem, we �rst initialize all trainable parameters
using “Xavier” initialization [12]. After that we apply the Stochastic
Gradient Descent (SGD) algorithm to J with shu�ed mini-batches.
The parameters are updated through back propagation (see [13]
for its principle) with Adam rule [17]. To exploit the parallelism
of operations for speeding up, we train our neural network on the
NVIDIA-GPU with Tensor�ow [1].

The hyper-parameters in our model are set as follows: the length
of the context window is C = 4; the number of negative samples is
S = 2; the embedding dimensions are [m1,m2,m3,m4,m5,m6,
m7] = [100, 100, 10, 20, 10, 10, 20]; the strength of constraints is
� = 1.0; the strength of L2 regularization on transformations is
� = 0.01; the batch size is 128 and the neural network is trained for
5 epochs.

4 DEPLOYING IDS REPRESENTATION
The low-dimensional representations learned by our approach can
be e�ectively deployed in many applications in E-commerce. In this
section, we give four real-world examples in Hema App.

4.1 Measuring Items Similarity
Computing item-item relationships is a key building block in mod-
ern recommendation systems. These relationships are extensively
used in many recommendation tasks. One classic task is “People
also like”, in which similar items are recommended to users based on
the item they are viewing. Most online stores, e.g., Amazon, Taobao,
Net�x and iTunes store etc., provide similar recommendation lists.
Another classic task is to prepare for user-item recommendations,
where Click Through Rates (CTR) are calculated between users
and items (as mentioned in Section 2). One typical choice of trig-
ger is visited items and the candidate set is constructed based on
item-item similarities. Given user u, we take the items interacted
by u in recent past as the seed set (denoted by SEED(u)). For each
seedi 2 SEED(u), we take into account its top-N similar items and
the candidate set for user u is:

candidate(u) =
ÿ

seedi 2SEED(u)
(top-N similar items of seedi). (14)

The item-based Collaborative Filtering (CF) [21, 30] is a famous
method of calculating item-item similarities. It calculates similarity
scores using user-item interactions. However, user-item relation-
ships are not always available. A large proportion of interactions in
online shopping has no explicit user identi�cation. Instead, the ses-
sion identi�cation is available in most situations. We will see that
measuring item similarities by cosine distances among embedding
vectors has a higher recall score than the classical item-based CF
algorithm. In practice, by integrating the new similarities into orig-
inal scores calculated by CF algorithm, the performance of online
recommendation system is signi�cantly improved.

4.2 Transferring from Seen Items to Unseen
Items

New items cause the cold-start problem, which means item IDs
with no historical records are invisible to recommendation systems
[31]. Many existing methods cannot process new items, including
item-based CF and original item2vec [3] etc. Several content-based
approaches are proposed to address this problem, such as image-
based [22] and text-based [35] recommendations. In this paper, we
propose a new method to relieve the cold-start problem on unseen
items, where an approximate embedding vector is constructed for
the new item ID. It is facilitated by themeasurability of relationships
among heterogeneous IDs.

The basic idea is that IDs connected to the new item ID usually
have historical records. For instance, given a new item, its corre-
sponding product is likely sold elsewhere and the corresponding
store has already sold other items. Therefore we can construct an
approximate embedding vector for the new item ID from the em-
bedding vectors of IDs connected to it. Since � is a monotonically
increasing function, we can derive Eq. 11 as following:

p(itemi |IDs(itemi))

= �

 K’
k=2

wikeTi1Mkeik

!

/
K’
k=2

wikeTi1Mkeik

= eTi1

 K’
k=2

wikMkeik

!
.

(15)

Maximizing the log-likelihood given by Equation 12 leads to
p(itemi |IDs(itemi)) ! 1 and thus it is reasonable to approximate
ei1 according to:

p(itemi |IDs(itemi)) ! 1

) eTi1

 K’
k=2

wikMkeik

!
is relatively large

) ei1 ⇡
K’
k=2

wikeTikM
T
k .

(16)

We here assume every connected idk (k = 2, . . . ,K) has historical
records for simplicity. In practice, we only take into account the idk
which has historical records. Actually, the more connected IDs are

Since the preferences of users in Hema change quickly, the em-
bedding vectors of user IDs should be updated frequently (such
as updated daily), to immediately re�ect the latest preference. Un-
like the RNN model, which needs the training procedure and is
very computational expensive, Average is able to learn and update
representations in short periods of time.

For user u 2 U , let Su = [item1, . . . , itemt , . . . , itemT] denote
the interactive sequence, where the recent T item IDs are arranged
in reverse chronological order. We construct the embedding vector
for user u by:

Embedding(u) = 1
T

T’
t=1

et , (13)

where et is the embedding vector of itemt .

3.6 Model Learning
Optimizing the jointly embedding model is equivalent to maximiz-
ing the log-likelihood given by Eq. 12, which is approximated by
log-uniform negative-sampling (as shown in Eq. 7). To solve the
optimization problem, we �rst initialize all trainable parameters
using “Xavier” initialization [12]. After that we apply the Stochastic
Gradient Descent (SGD) algorithm to J with shu�ed mini-batches.
The parameters are updated through back propagation (see [13]
for its principle) with Adam rule [17]. To exploit the parallelism
of operations for speeding up, we train our neural network on the
NVIDIA-GPU with Tensor�ow [1].

The hyper-parameters in our model are set as follows: the length
of the context window is C = 4; the number of negative samples is
S = 2; the embedding dimensions are [m1,m2,m3,m4,m5,m6,
m7] = [100, 100, 10, 20, 10, 10, 20]; the strength of constraints is
� = 1.0; the strength of L2 regularization on transformations is
� = 0.01; the batch size is 128 and the neural network is trained for
5 epochs.

4 DEPLOYING IDS REPRESENTATION
The low-dimensional representations learned by our approach can
be e�ectively deployed in many applications in E-commerce. In this
section, we give four real-world examples in Hema App.

4.1 Measuring Items Similarity
Computing item-item relationships is a key building block in mod-
ern recommendation systems. These relationships are extensively
used in many recommendation tasks. One classic task is “People
also like”, in which similar items are recommended to users based on
the item they are viewing. Most online stores, e.g., Amazon, Taobao,
Net�x and iTunes store etc., provide similar recommendation lists.
Another classic task is to prepare for user-item recommendations,
where Click Through Rates (CTR) are calculated between users
and items (as mentioned in Section 2). One typical choice of trig-
ger is visited items and the candidate set is constructed based on
item-item similarities. Given user u, we take the items interacted
by u in recent past as the seed set (denoted by SEED(u)). For each
seedi 2 SEED(u), we take into account its top-N similar items and
the candidate set for user u is:

candidate(u) =
ÿ

seedi 2SEED(u)
(top-N similar items of seedi). (14)

The item-based Collaborative Filtering (CF) [21, 30] is a famous
method of calculating item-item similarities. It calculates similarity
scores using user-item interactions. However, user-item relation-
ships are not always available. A large proportion of interactions in
online shopping has no explicit user identi�cation. Instead, the ses-
sion identi�cation is available in most situations. We will see that
measuring item similarities by cosine distances among embedding
vectors has a higher recall score than the classical item-based CF
algorithm. In practice, by integrating the new similarities into orig-
inal scores calculated by CF algorithm, the performance of online
recommendation system is signi�cantly improved.

4.2 Transferring from Seen Items to Unseen
Items

New items cause the cold-start problem, which means item IDs
with no historical records are invisible to recommendation systems
[31]. Many existing methods cannot process new items, including
item-based CF and original item2vec [3] etc. Several content-based
approaches are proposed to address this problem, such as image-
based [22] and text-based [35] recommendations. In this paper, we
propose a new method to relieve the cold-start problem on unseen
items, where an approximate embedding vector is constructed for
the new item ID. It is facilitated by themeasurability of relationships
among heterogeneous IDs.

The basic idea is that IDs connected to the new item ID usually
have historical records. For instance, given a new item, its corre-
sponding product is likely sold elsewhere and the corresponding
store has already sold other items. Therefore we can construct an
approximate embedding vector for the new item ID from the em-
bedding vectors of IDs connected to it. Since � is a monotonically
increasing function, we can derive Eq. 11 as following:

p(itemi |IDs(itemi))

= �

 K’
k=2

wikeTi1Mkeik

!

/
K’
k=2

wikeTi1Mkeik

= eTi1

 K’
k=2

wikMkeik

!
.

(15)

Maximizing the log-likelihood given by Equation 12 leads to
p(itemi |IDs(itemi)) ! 1 and thus it is reasonable to approximate
ei1 according to:

p(itemi |IDs(itemi)) ! 1

) eTi1

 K’
k=2

wikMkeik

!
is relatively large

) ei1 ⇡
K’
k=2

wikeTikM
T
k .

(16)

We here assume every connected idk (k = 2, . . . ,K) has historical
records for simplicity. In practice, we only take into account the idk
which has historical records. Actually, the more connected IDs are

Since the preferences of users in Hema change quickly, the em-
bedding vectors of user IDs should be updated frequently (such
as updated daily), to immediately re�ect the latest preference. Un-
like the RNN model, which needs the training procedure and is
very computational expensive, Average is able to learn and update
representations in short periods of time.

For user u 2 U , let Su = [item1, . . . , itemt , . . . , itemT] denote
the interactive sequence, where the recent T item IDs are arranged
in reverse chronological order. We construct the embedding vector
for user u by:

Embedding(u) = 1
T

T’
t=1

et , (13)

where et is the embedding vector of itemt .

3.6 Model Learning
Optimizing the jointly embedding model is equivalent to maximiz-
ing the log-likelihood given by Eq. 12, which is approximated by
log-uniform negative-sampling (as shown in Eq. 7). To solve the
optimization problem, we �rst initialize all trainable parameters
using “Xavier” initialization [12]. After that we apply the Stochastic
Gradient Descent (SGD) algorithm to J with shu�ed mini-batches.
The parameters are updated through back propagation (see [13]
for its principle) with Adam rule [17]. To exploit the parallelism
of operations for speeding up, we train our neural network on the
NVIDIA-GPU with Tensor�ow [1].

The hyper-parameters in our model are set as follows: the length
of the context window is C = 4; the number of negative samples is
S = 2; the embedding dimensions are [m1,m2,m3,m4,m5,m6,
m7] = [100, 100, 10, 20, 10, 10, 20]; the strength of constraints is
� = 1.0; the strength of L2 regularization on transformations is
� = 0.01; the batch size is 128 and the neural network is trained for
5 epochs.

4 DEPLOYING IDS REPRESENTATION
The low-dimensional representations learned by our approach can
be e�ectively deployed in many applications in E-commerce. In this
section, we give four real-world examples in Hema App.

4.1 Measuring Items Similarity
Computing item-item relationships is a key building block in mod-
ern recommendation systems. These relationships are extensively
used in many recommendation tasks. One classic task is “People
also like”, in which similar items are recommended to users based on
the item they are viewing. Most online stores, e.g., Amazon, Taobao,
Net�x and iTunes store etc., provide similar recommendation lists.
Another classic task is to prepare for user-item recommendations,
where Click Through Rates (CTR) are calculated between users
and items (as mentioned in Section 2). One typical choice of trig-
ger is visited items and the candidate set is constructed based on
item-item similarities. Given user u, we take the items interacted
by u in recent past as the seed set (denoted by SEED(u)). For each
seedi 2 SEED(u), we take into account its top-N similar items and
the candidate set for user u is:

candidate(u) =
ÿ

seedi 2SEED(u)
(top-N similar items of seedi). (14)

The item-based Collaborative Filtering (CF) [21, 30] is a famous
method of calculating item-item similarities. It calculates similarity
scores using user-item interactions. However, user-item relation-
ships are not always available. A large proportion of interactions in
online shopping has no explicit user identi�cation. Instead, the ses-
sion identi�cation is available in most situations. We will see that
measuring item similarities by cosine distances among embedding
vectors has a higher recall score than the classical item-based CF
algorithm. In practice, by integrating the new similarities into orig-
inal scores calculated by CF algorithm, the performance of online
recommendation system is signi�cantly improved.

4.2 Transferring from Seen Items to Unseen
Items

New items cause the cold-start problem, which means item IDs
with no historical records are invisible to recommendation systems
[31]. Many existing methods cannot process new items, including
item-based CF and original item2vec [3] etc. Several content-based
approaches are proposed to address this problem, such as image-
based [22] and text-based [35] recommendations. In this paper, we
propose a new method to relieve the cold-start problem on unseen
items, where an approximate embedding vector is constructed for
the new item ID. It is facilitated by themeasurability of relationships
among heterogeneous IDs.

The basic idea is that IDs connected to the new item ID usually
have historical records. For instance, given a new item, its corre-
sponding product is likely sold elsewhere and the corresponding
store has already sold other items. Therefore we can construct an
approximate embedding vector for the new item ID from the em-
bedding vectors of IDs connected to it. Since � is a monotonically
increasing function, we can derive Eq. 11 as following:

p(itemi |IDs(itemi))

= �

 K’
k=2

wikeTi1Mkeik

!

/
K’
k=2

wikeTi1Mkeik

= eTi1

 K’
k=2

wikMkeik

!
.

(15)

Maximizing the log-likelihood given by Equation 12 leads to
p(itemi |IDs(itemi)) ! 1 and thus it is reasonable to approximate
ei1 according to:

p(itemi |IDs(itemi)) ! 1

) eTi1

 K’
k=2

wikMkeik

!
is relatively large

) ei1 ⇡
K’
k=2

wikeTikM
T
k .

(16)

We here assume every connected idk (k = 2, . . . ,K) has historical
records for simplicity. In practice, we only take into account the idk
which has historical records. Actually, the more connected IDs are

���.��-� ��� ����-�	��.-� ��.,,-�	��.-

�
�����

��� �
	� ���� ����� �	 ����� �����

�� ��,� �	�� �.�����	�� ��.
�,�� 	-� 	���.��,	� ,
���-� ���.�� 	�

�.-������� �. ���� ��	�� ��
	��� ��	 �� ��	� 	����
�� ��� �.--��� �. -� ��, ���

���	��� �	� ����.���	� ��.����

Table 1: The click recall@top-N of all methods (higher is better).

top-N 10 20 30 40 50 60 70 80 90 100 1000

weekday CF 2.46% 4.46% 6.07% 7.44% 8.66% 9.82% 10.88% 11.82% 12.69% 13.49% 29.83%
ITEM2VEC 4.72% 7.46% 9.43% 11.00% 12.35% 13.53% 14.16% 14.73% 15.26% 15.74% 30.35%

weekend CF 3.44% 6.18% 8.46% 10.39% 12.12% 13.65% 15.05% 16.32% 17.49% 18.57% 42.33%
ITEM2VEC 6.49% 10.42% 13.29% 15.58% 17.48% 19.04% 19.81% 20.55% 21.23% 21.88% 43.34%

Table 2: The click recall@top-1000 of all methods at di�erent popularity levels (higher is better).

popular-level 1 2 3 4 5 6 7 8 9 10
CF 22.67% 31.53% 36.81% 39.85% 43.17% 46.72% 47.22% 47.50% 45.85% 58.27%

ITEM2VEC 25.13% 40.44% 45.02% 47.14% 49.33% 51.34% 49.70% 49.72% 47.99% 48.97%

Table 3: The click recall@top-N of baselines and constructed vectors (higher is better).

top-N 10 20 30 40 50 60 70 80 90 100 1000

weekday
RANDOM 0.01% 0.01% 0.02% 0.03% 0.04% 0.04% 0.05% 0.06% 0.07% 0.07% 0.53%

HOT 1.60% 2.46% 3.19% 3.77% 4.36% 4.83% 5.39% 5.86% 6.39% 6.97% 27.67%
NEW2VEC 4.56% 7.05% 8.73% 9.94% 10.88% 11.63% 11.75% 11.87% 11.99% 12.11% 16.95%

weekend
RANDOM 0.00% 0.01% 0.02% 0.03% 0.04% 0.05% 0.06% 0.07% 0.08% 0.08% 0.70%

HOT 1.69% 2.51% 3.19% 3.79% 4.35% 4.83% 5.42% 6.00% 6.53% 7.13% 27.75%
NEW2VEC 6.26% 9.86% 12.27% 14.02% 15.33% 16.37% 16.47% 16.56% 16.66% 16.75% 21.89%

Table 4: The RMAE scores of di�erent methods in forecast-
ing delivery demand (lower is better).

dataset day 1 day 2 day 3
HISTORY 43.23% 40.75% 34.26%

HISTORY with ONE-HOT 42.57% 39.00% 34.57%
HISTORY with VEC 40.95% 33.75% 33.02%

and distance unavailability. The embedding vectors of store IDs
learned by our embedding model can overcome those limitations.
By taking full advantage of the information contained in store IDs,
our model achieves much more improvements.

6 RELATEDWORK
Many machine intelligence techniques, such as recommendation
[8] and forecast [4] etc., are developed to handle the dynamic and
complex business environment in E-commerce. The performance
of these intelligence techniques is heavily dependent on the data
representation and thus representation learning has been a very
popular topic for a while [5]. Recently, many works focus on a
speci�c family of representation learning methods, namely neural
networks (or deep learning). It is inspired by the nervous system
and consists of multiple non-linear transformations. Representation
learning with neural networks has brought remarkable successes
to both academia and industry [7, 14, 18].

The unordered discrete data (or called IDs) is one of the most
important types of data in many scenarios. The word in Natural

Language Processing (NLP) is a typical example of IDs. Traditional
techniques treat them as atomic units and represent them as indices
or one-hot encodings. This simple and robust choice has many limi-
tations, including sparsity and distance unavailability. To overcome
these limitations, low-dimensional distributed representations are
proposed, which can be traced back to the classical neural network
language model [6]. They jointly learn the word embedding vector
and the statistical language model with a linear projection layer and
a non-linear hidden layer. It was later shown that word embedding
vectors signi�cantly improve and simplify many NLP applications
[10, 11]. However, the original neural network language model
is very computationally expensive since it involves many dense
matrix multiplications. Mikolov et al. introduced the skip-gram
model [23] (also well-known as word2vec), which predicts the sur-
rounding context words given the target word to avoid many dense
matrix multiplications. Although word2vec is very e�cient to learn
high-quality embedding vectors of words, Mikolov et al. used the
negative-sampling to approximate full softmax to reduce the com-
putation further [24]. Their works have been followed by many
others. Le et al. developed an algorithm to represent each document
with a vector by training a language model to predict words in the
document [19]. Li et al. [20] and Yamada et al. [34] both jointly
map words and entities (from the knowledge base) into the same
semantic vector space.

Embedding techniques have drawn many attentions from vari-
ous domains beyond the original NLP domain. Perozzi et al. [28],
Tang et al. [33] and Grover et al. [15] established an analogy for
networks by representing a network as a “document”. They sample

�����".�, 	�� �����������.��� ��(�����)��.��

%��������.�, ���1�� �.������4 �1��.��

��� ����,.�, ��������� �.�� ����� � �.,� �������.�� �� ����� ��� ��: (��������� ��

�������� ��� ��������(� �� ����� �� ���, �!.��.�, ��������� ���(� ��
�����
������ ����

��� ����,.�, �������� ���(� �� ������

taken into account, the better approximation we can get. The ex-

perimental results show that the constructed vector
KÕ
k=2

wikeTikM
T
k

is very encouraging.

4.3 Transferring across Di�erent Domains
For emerging platforms like Hema, a high proportion of users are
new customers, and thus the personalized recommendation is very
challenging. In this work, we transfer the preferences of users
on long existing platforms (source domain), onto the emerging
platform (target domain) to overcome this challenge. Since Taobao
covers the majority of E-commerce users in China, we select it as
the source domain.

Figure 5: The process of transferring user vectors across dif-
ferent domains.

Let U s and U t denote the user set in source domain and target
domain respectively, and let U i denote their intersection U s —U t .
The overall process is shown in Figure 5. Firstly, user vectors forU s

are calculated via aggregating embedding vectors of the interactive
item IDs in Taobao, which is detailed in Section 3.5. Secondly, based
on the similarities measured by embedding vectors, users in U i

are clustered into 1000 groups by k-means. Thirdly, for each group,
the top N most popular Hema items within it are selected as the
candidate set. Fourthly, the new coming user inU s \U t is assigned
to the most similar group according to the similarities between the
user vector and the group centers. Finally, taking assigned group
as the trigger, corresponding candidate set is recommended to the
new user after being �ltered and ranked accordingly.

There are two alternative aggregating manners: naive average
and weighted average. In the weighted average, di�erent interactive
items have di�erent weights:

wt =
’

u0 2U i

IA(u 0, itemt),

IA(x) =
⇢
0, u 0 has no interaction on itemt
Aj , u 0 has interaction j on itemt

.

(17)

In this way, the items that are similar to items in the target domain
have higher weights. The Aj for di�erent types of interactions
are tuned by online experiments, e.g. purchase is more heavily
weighted than click. Subsequently for user u 2 U s , the embedding
vector in Eq. 13 is extended to:

Embedding(u) =
ÕT
t=1wtetÕT
t=1wt

. (18)

We will see that even naive average brings signi�cant improve-
ment, and weighted average further ampli�es the improvement.

4.4 Transferring across Di�erent Tasks
Sales forecast is very helpful for making informed business deci-
sions in E-commerce. It can help to manage the workforce, cash
�ow and resources, such as optimizing the delivery process. We
here consider the problem of forecasting the delivery demand of
each store per 30 minutes in the next day. The forecast results can
guide us to pre-order appropriate number of delivery sta�.

The value of sales forecast depends on its accuracy and inaccu-
rate forecasts deteriorate decision e�ciency. Ordering too many
delivery sta� leads to manpower waste and ordering insu�cient
delivery sta� causes that orders cannot be delivered in time. Typical
forecast techniques take historical sales data as input. However, the
store ID is also very useful since di�erent stores follow di�erent
patterns, and the forecasting model should be able to distinguish
them. One classical way to consider store ID is one-hot encoding,
which treats store IDs as atomic units. Although the simplicity and
robustness make it very popular in statistical models, it has several
limitations, as mentioned in Section 1.

In this paper, we use the embedding vectors learned by our
model to represent store IDs. To forecast the delivery demand, we
take both historical sales data and embedding vectors as the input.
Following the input layer, several full connections with activation
function are used to extract high order representations. Formally,
let h0 denote the input layer, then the output of each hidden layer
i(i = 1, . . . ,N) is:

hi = a(Wihi�1 + bi). (19)
The element-wise activation function a(·) makes the network ca-
pable of learning non-linear functions. In practice, we choose the
ReLU (Recti�ed Linear Unit de�ned as max(0, x)) due to its sim-
plicity and computing e�ciency. Wi is the a�ne transformation
of hidden layer i and bi is the corresponding bias term. After all
hidden layers, we use the linear regression to forecast the delivery
demand �̂i :

�̂i = wT hN + b . (20)
We train the model to minimize the Mean Absolute Error (MAE)

and the learning details are similar to Section 3.6. We will see that
these embedding vectors are more e�ective in representing stores
than the one-hot encoding.

5 EXPERIMENTS
In this section, we present the empirical evaluation of our approach
in real-word scenarios of Hema App.

5.1 Measuring Items Similarity
The item-item similarities are extensively used in many recommen-
dation tasks, including “People also like” and CTR prediction etc.
The similarity between two item IDs can be measured by the cosine
similarity between their vectors:

sim(itemi , itemj) = cos(vi , vj) =
vTi vj

| |vi | |2 · | |vj | |2
. (21)

When training our model, historical interaction data in the past
14 days are used. We construct the candidate set for each user ui
as described in Section 4.1, and measure the o�ine performance
of di�erent methods by the click recall@top-N of the generated

�� .���� ���� ��� �.�.��� ��

.���� .� ��� ���,��)���.�

�����) ���� �.,��� :�.,����

	�.�� �����,� .��������

� 7 ������ ��� 4�� ��.,�4�� �����,� .��������

� 7 ������

���.��,�� ��� ���������
�,��� �����
��

���
�����
� ���� �������
� ��	

	
.�� �����
�� �
� ��.� �� �
�
�� ��� ���-������ ����
� ��,,�� �� �� ��� ����

������,
�� ������ �� �.,���� ��
��� ����
-,�������,������������������������
��
��
���

���,������,����.��������,���,������������������,�,���.��
��,�����������
����
�����������
����

Table 1: The click recall@top-N of all methods (higher is better).

top-N 10 20 30 40 50 60 70 80 90 100 1000

weekday CF 2.46% 4.46% 6.07% 7.44% 8.66% 9.82% 10.88% 11.82% 12.69% 13.49% 29.83%
ITEM2VEC 4.72% 7.46% 9.43% 11.00% 12.35% 13.53% 14.16% 14.73% 15.26% 15.74% 30.35%

weekend CF 3.44% 6.18% 8.46% 10.39% 12.12% 13.65% 15.05% 16.32% 17.49% 18.57% 42.33%
ITEM2VEC 6.49% 10.42% 13.29% 15.58% 17.48% 19.04% 19.81% 20.55% 21.23% 21.88% 43.34%

Table 2: The click recall@top-1000 of all methods at di�erent popularity levels (higher is better).

popular-level 1 2 3 4 5 6 7 8 9 10
CF 22.67% 31.53% 36.81% 39.85% 43.17% 46.72% 47.22% 47.50% 45.85% 58.27%

ITEM2VEC 25.13% 40.44% 45.02% 47.14% 49.33% 51.34% 49.70% 49.72% 47.99% 48.97%

Table 3: The click recall@top-N of baselines and constructed vectors (higher is better).

top-N 10 20 30 40 50 60 70 80 90 100 1000

weekday
RANDOM 0.01% 0.01% 0.02% 0.03% 0.04% 0.04% 0.05% 0.06% 0.07% 0.07% 0.53%

HOT 1.60% 2.46% 3.19% 3.77% 4.36% 4.83% 5.39% 5.86% 6.39% 6.97% 27.67%
NEW2VEC 4.56% 7.05% 8.73% 9.94% 10.88% 11.63% 11.75% 11.87% 11.99% 12.11% 16.95%

weekend
RANDOM 0.00% 0.01% 0.02% 0.03% 0.04% 0.05% 0.06% 0.07% 0.08% 0.08% 0.70%

HOT 1.69% 2.51% 3.19% 3.79% 4.35% 4.83% 5.42% 6.00% 6.53% 7.13% 27.75%
NEW2VEC 6.26% 9.86% 12.27% 14.02% 15.33% 16.37% 16.47% 16.56% 16.66% 16.75% 21.89%

Table 4: The RMAE scores of di�erent methods in forecast-
ing delivery demand (lower is better).

dataset day 1 day 2 day 3
HISTORY 43.23% 40.75% 34.26%

HISTORY with ONE-HOT 42.57% 39.00% 34.57%
HISTORY with VEC 40.95% 33.75% 33.02%

and distance unavailability. The embedding vectors of store IDs
learned by our embedding model can overcome those limitations.
By taking full advantage of the information contained in store IDs,
our model achieves much more improvements.

6 RELATEDWORK
Many machine intelligence techniques, such as recommendation
[8] and forecast [4] etc., are developed to handle the dynamic and
complex business environment in E-commerce. The performance
of these intelligence techniques is heavily dependent on the data
representation and thus representation learning has been a very
popular topic for a while [5]. Recently, many works focus on a
speci�c family of representation learning methods, namely neural
networks (or deep learning). It is inspired by the nervous system
and consists of multiple non-linear transformations. Representation
learning with neural networks has brought remarkable successes
to both academia and industry [7, 14, 18].

The unordered discrete data (or called IDs) is one of the most
important types of data in many scenarios. The word in Natural

Language Processing (NLP) is a typical example of IDs. Traditional
techniques treat them as atomic units and represent them as indices
or one-hot encodings. This simple and robust choice has many limi-
tations, including sparsity and distance unavailability. To overcome
these limitations, low-dimensional distributed representations are
proposed, which can be traced back to the classical neural network
language model [6]. They jointly learn the word embedding vector
and the statistical language model with a linear projection layer and
a non-linear hidden layer. It was later shown that word embedding
vectors signi�cantly improve and simplify many NLP applications
[10, 11]. However, the original neural network language model
is very computationally expensive since it involves many dense
matrix multiplications. Mikolov et al. introduced the skip-gram
model [23] (also well-known as word2vec), which predicts the sur-
rounding context words given the target word to avoid many dense
matrix multiplications. Although word2vec is very e�cient to learn
high-quality embedding vectors of words, Mikolov et al. used the
negative-sampling to approximate full softmax to reduce the com-
putation further [24]. Their works have been followed by many
others. Le et al. developed an algorithm to represent each document
with a vector by training a language model to predict words in the
document [19]. Li et al. [20] and Yamada et al. [34] both jointly
map words and entities (from the knowledge base) into the same
semantic vector space.

Embedding techniques have drawn many attentions from vari-
ous domains beyond the original NLP domain. Perozzi et al. [28],
Tang et al. [33] and Grover et al. [15] established an analogy for
networks by representing a network as a “document”. They sample

candidate set in the next day:

recall@top-N =
Õ
ui #{hits in top-N}uiÕ
ui #{total clicks}ui

. (22)

Given a user ui , the term #{hits in top-N}ui denotes the number
of clicked items hit by candidate set and the term #{total clicks}ui
denotes the total number of clicked items.

Table 1 shows the experimental results about click recall@top-N
of two methods. As we can see, the low-dimensional embedding
methods outperform item-based CF method [21, 30] signi�cantly,
especially when N is small. The reason is that item-based CF needs
explicit user-item relationships and they are not always available.
Instead of explicit user identi�cation, the available information is
session identi�cation and skip-gram on the interaction sequence
can take advantage of all data. A noticeable phenomenon is that
the recall@top-N over the weekend is higher than the weekday,
which is consistent with the experiences in our daily life.

To get a better understanding about the improvements, we uni-
formly divide all items from the weekend dataset into 10 popularity
levels according to their frequencies of interactions. After that
we calculate the click recall@top-1000 at each level and show the
experimental results in Table 2. Although unpopular items have
few explicit user-item relationships, they appear in a considerable
number of interaction sequences. Therefore embedding methods
achieve better results, whereas the item-based CF method cannot
deal with unpopular items very well.

In the online recommendation system, by integrating the new
similarities into original scores calculated by CF algorithm, the �nal
recall increases by 24.0%.

5.2 Transferring from Seen Items to Unseen
Items

New items cause cold-start problem, and many methods cannot
process them. We attempt to relieve the cold-start problem by con-
structing an approximate embedding vector for the new item ID.
Since item-based CF cannot perceive item IDs with no historical
records, we compare our approximation to the baselines where
candidate sets consist of random or hot item IDs. We measure the
performance of di�erent methods by the click recall@top-N of the
generated candidate set in the next day.

Table 3 shows the experimental results about click recall@top-N
of baselines and our method. As we can see, the performance of
constructed vectors is competitive. Considering that the classic
item-based CF cannot deal with new item IDs at all, our approach
is very encouraging. The recall@top-N on the weekend is higher
than the weekday, which is similar to Section 5.1.

On closer inspection, when N is less than 50 the click recall is
comparable to that using item ID embedding vectors directly. When
N is beyond 50, few improvements can be achieved. That reveals the
limitation of our approach: the approximation is accurate when N is
small and the approximation becomes inaccurate while N increases.
In practice, the problem brought by this limitation is negligible
in that the number of items we can recommend to a user is very
limited.

5.3 Transferring across Di�erent Domains
Since new users have no historical records, it is impossible to eval-
uate di�erent methods o�ine. Instead, we conduct an A/B test over
one week and three methods are compared:

• Hot. The baseline is recommending the same list containing
hot items to each new user.

• Naive average. Through transferring the preferences of
users on Taobao to Hema, personalized recommendation is
provided to each new user. In this method, the user vector is
generated by naive average.

• Weighted average.When generating user vectors, di�erent
weights are here assigned to di�erent interactive items and
the weighted average is adopted.

Performances of di�erent methods are evaluated by Pay-Per-
Impression (PPM). Compared to the baseline, the naive average
increased PPM by 71.4% and the weighted average increased PPM
by 141.8%. The signi�cant improvements demonstrate that user
embedding vectors learned by our approach can be e�ectively trans-
ferred across di�erent domains to overcome the cold-start problem
brought by new users.

5.4 Transferring across Di�erent Tasks
We here consider the problem of forecasting the delivery demand
of each store per 30 minutes on the next day. The forecast results
can guide us to pre-order appropriate number of delivery sta�. We
compare our embedding vectors against several baselines:

• HISTORY. The typical forecast techniques take historical
sales data as the input. For every 30-minute interval of each
store, the input contains the delivery demands in the same
time interval on the recent 7 days.

• HISTORYwith ONE-HOT. The store ID is also very useful
since di�erent stores follow di�erent patterns. One classical
way to consider store ID is one-hot encoding, which treats
store IDs as atomic units. Besides the historical data, we here
also take the one-hot encoding as part of the input.

• HISTORY with VEC. One-hot encoding has several limita-
tions, such as sparsity and similarity immeasurability etc. We
represent the store ID using the embedding vector learned
by our embedding model and take it as part of the input
instead of one-hot encoding.

There are �ve full connection layers of size 128 in every alterna-
tive methods. We measure the performance of di�erent methods
by the Relative Mean Absolute Error (RMAE):

RMAE =
ÕN
i=1 |�i � �̂i |ÕN

i=1 �i
, (23)

where �i is the true delivery demand and �̂i is the forecasted de-
livery demand. Note that it is di�erent from the Mean Absolute
Percentage Error (MAPE). RMAE actually is an equivalent variety
of MAE since

ÕN
i=1 �i is a constant for a certain dataset.

The RMAE scores of di�erent methods in forecasting delivery
demand are shown in Table 4. We repeat the experiment on 3
di�erent days to con�rm the improvement. As we can see, the
store IDs are very useful and even one-hot encoding can bring
improvements. However, one-hot encoding is plagued by its sparsity

����� �.��

�-� �������� �.������
� .� ��� �� �-� ���� .�������� �#��� �� ���� .� ���# ������.���

�����.���# .� �����������

�# ��.���# �.�, .�������.!� ��� ����� ��� �-� ��� �� ��� �������.��� ����,
��� "�

������� �� �����.�,����� �����"��� �� ����� ��� �������� ��"��.����.����

�����������.��� ��� ���
��� .��� �.�, ���
�� .���
�� �����
�� ����
� ����,��#
� ����

�-��� ��"��.����.���� �����������.��� ��� �����#�� ��� �!�� ���� .� ��!���� �����"����

������.�� �� 	��� ��� ��� �-� ��� ��� !��.���� �-� ������.!������

������

